摘要
根据李雅普诺夫稳定性理论建立了非线性方程组的解与对应的常微分方程组初值问题的解之间的关系,在此基础上,给出了解非线性方程组的一个三阶显式单步迭代法。数值试验结果表明,该方法是有效的。
Basing on the theory of Liapunov's -stable, the relationship between the root of systems of nonlinear equations and the solution of the initial value problems is constructed in this paper. An explicit iterative method for solving systems of nonlinear equations is given. The method is 3^rd order convergent. Finally, the effectiveness Of the method is validated with numerical experiments.
出处
《常州工学院学报》
2006年第1期1-4,共4页
Journal of Changzhou Institute of Technology
关键词
非线性方程组
迭代法
数值分析
systems of nonlinear equations
iterative method
numerical analysis