期刊文献+

Numerical Quadratures for Hadamard Hypersingular Integrals 被引量:1

Numerical Quadratures for Hadamard Hypersingular Integrals
下载PDF
导出
摘要 In this paper,we develop Gaussian quadrature formulas for the Hadamard fi- nite part integrals.In our formulas,the classical orthogonal polynomials such as Legendre and Chebyshev polynomials are used to approximate the density function f(x)so that the Gaussian quadrature formulas have degree n-1.The error estimates of the formulas are obtained.It is found from the numerical examples that the convergence rate and the accu- racy of the approximation results are satisfactory.Moreover,the rate and the accuracy can be improved by choosing appropriate weight functions. In this paper, we develop Caussian quadrature formulas for the Hadamard finite part integrals. In our formulas, the classical orthogonal polynomials such as Legendre and Chebyshev polynomials are used to approximate the density function f(x) so that the Caussian quadrature formulas have degree n - 1. The error estimates of the formulas are obtained. It is found from the numerical examples that the convergence rate and the accuracy of the approximation results are satisfactory. Moreover, the rate and the accuracy can be improved by choosing appropriate weight functions.
作者 Youjian Shen
基金 This research is supported in part by China NSF under grant 10071096 NSF of Guangdong under grant 990228 NSF of Hainan under grant 80525 the One Hundred Distinguished Young Chinese Scientists Program of the Chinese Academy of Sciences from Yuesheng Xu.
关键词 数值积分 有限部分 规格化正交多项式 求积公式 Gaussian quadrature finite part hypersingular integral orthonormal polynomial.
  • 相关文献

参考文献11

  • 1W. L. Wendland,E. P. Stephan.A hypersingular boundary integral method for two-dimensional screen and crack problems[J].Archive for Rational Mechanics and Analysis.1990(4)
  • 2Kutt H R.On the numerical evaluation of finite part integrals involving an algebraic singularity[]..1975
  • 3Hui C Y,Shia D.Evaluations of hypersingular integrals using Gaussian quadrature[].InterJNumerMethEng.1999
  • 4Ioakimidis N I,Pitta M S.Remarks on the Gaussian quadrature rule for finite-part integrals with a second-order singularity[].ComputMethApplMechEng.1988
  • 5Zwillinger D.Handbook of integration[]..1992
  • 6Tsamasphyros G.Methods for combination of singular integral equations and finite elements methods[].ComputMethin ApplMechEng.1987
  • 7Abramowitz M,Stegun I A.Handbook of mathematical functions[]..1965
  • 8Magnus W,Oberhettinger F,Soni R P.Formulas and theorems for the special functions of mathematical physics[]..1966
  • 9Yu D H.Mathematical theory of natural boundary element methods[]..1993
  • 10Tanaka M,Sladek V,Sladek J.Regularization techniques applied to boundary element methods[].Applied Mechanics Reviews.1994

同被引文献6

  • 1LI S H.A fast numerical method for harmonic equation based on natural boundary integral[J].Appl Anal,2008,87 (6):667-676.
  • 2冯康.微分和积分方程、有限和无限元.计算科学,1980,2:100-105.
  • 3冯康.Canonical boundary reduction and finite element method[C].Proceedings of International Invitational Symposium on the Finite Element Method (1981,合肥).北京:科学出版社,1982.
  • 4冯康.有限元方法与自然边界归化[C] //国际数学家大会论文集,1983:1439-1453.
  • 5余得浩.自然边界元方法的数学理论[M].北京:科学出版社,1993.
  • 6CHEN W S,LIN W.Galerkin trigonometric wavelet methods for the natural boundary integral equations[J].Appl Math Comp,2001,121:75-92.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部