期刊文献+

随机奇异系统多传感器信息融合Kalman多步预报器 被引量:2

Multi-sensor Information fusion Kalman Multi-step predictors for Stochastic Singular Systems
下载PDF
导出
摘要 应用Kalman滤波方法和奇异系统典范型分解,对单传感器随机奇异系统,给出了Kalman多步预报器新算法。对带多传感器随机奇异系统,基于线性最小方差标量加权融合算法,给出了具有两层融合结构的多传感器分布式最优信息融合Kalman 多步预报器。同时给出了任两个传感器之间的预报误差协方差阵的计算公式。当各传感器子系统存在稳态Kalman滤波时,又给出了稳态信息融合Kalman多步预报器。稳态权重可在各子系统达到稳态时通过一次融合计算获得,避免了每时刻计算协方差阵和融合权重,便于实时应用。仿真例子验证了其有效性。 Using Kalman filtering method and a decomposition in canonical form for singular systems, new algorithms for Kalman multi-step predictor are presented for stochastic singular systems measured by single sensor. A decentralized optimal information fusion Kalman multi-step predictor with a two-layer fusion structure is proposed based on the fusion algorithm weighted by scalars in the linear minimum variance sense for stochastic singular systems measured by multiple sensors. The computation formulas for the prediction error covariance matrix between any two subsystems are given. Furthermore, steady-state information fusion Kalman multi-step predictor is also given when steady-state Kalman filter exists for each sensor systems. The steady-state weights can be obtained only by one time fusing after all subsystems enter steady states. It avoids computing covariance matrices and fusion weights at each time step. It is convenient to apply in real time. Simulation example proves its effectiveness.
作者 马静 孙书利
出处 《科学技术与工程》 2006年第6期669-674,685,共7页 Science Technology and Engineering
基金 国家自然科学基金(60504034)黑龙江省青年基金(QC04A01)黑龙江大学自动控制重点实验室资助
关键词 随机奇异系统 信息融合 Kalman预报器 典范分解 stochastic singular system information fusion Kalman predictor canonical decomposition
  • 相关文献

参考文献15

  • 1[1]Darouach M,Zasadzinski M,Mehdi M.State estimation for stochastic singular linear systems.International Journal of Systems Science,1993;24(3):345-354
  • 2[2]Zhang H S,Chai T Y,Liu X J.A unified approach to optimal state estimation for stochastic singular systems.Automatica,1998; 34 (6):777-781
  • 3[3]Deng Z L,Liu Y M.Descriptor Kalman estimators.International Journal of Systems Science,1999; 30(11):1205-1212
  • 4孙书利,孟华,石莹,邓自立.广义系统降阶Wiener状态平滑器[J].科学技术与工程,2003,3(5):405-407. 被引量:1
  • 5石莹,沈永良,孙书利,邓自立.广义离散随机线性系统降阶Wiener滤波、平滑和预报器[J].控制理论与应用,2004,21(6):981-985. 被引量:12
  • 6[7]Carlson N A.Federated square root filter for decentralized parallel processes.IEEE Trans Aerospace and Electronic Systems,1990;26(3):517-525
  • 7[8]Kim K H.Development of track to track fusion algorithm.Proeeding of the American Control Conference,Maryland,1994:1037-1041
  • 8[9]Li X R,Zhu Y M,Wang J,Han C Z.Optimal linear estimation Fusion-Part Ⅰ:unified fusion rules.IEEE Trans Information Theory,2003:49(9):2192-2208
  • 9邓自立 祁荣宾.多传感器信息融合次优稳态Kalman滤波器[J].中国学术期刊文摘(科技快报),2000,6(2):183-184.
  • 10孙书利,崔平远.多传感器标量加权最优信息融合稳态Kalman滤波器[J].控制与决策,2004,19(2):208-211. 被引量:52

二级参考文献10

  • 1秦超英,戴冠中.广义离散随机线性系统的最优滤波[J].控制与决策,1993,8(1):65-68. 被引量:7
  • 2[1]Nikoukhah R, Willsky A S, Bernard C L. Kalman filtering and Ricati equations for descriptor systems. IEEE Trans Automatic Control, 1992; 37 (9):1325- 1341
  • 3[3]邓自立.卡尔曼滤波与维纳滤波--现代时间序列分析方法.哈尔滨:哈尔滨工业大学出版社,2000
  • 4[1]Carlson N A. Federated square root filter for decentralized parallel processes. IEEE Trans Aerospace and Electronic Systems, 1990; 26(3) :517-525
  • 5[2]Kim K H. Development of track to track fusion algorithm. Proceeding of the American Control Conference, Maryland, June 1994: 1037-1041
  • 6NIKOUKHAH R,WILLSKY A S,BERNARD C L.Kalman filtering and Riccati equations for descriptor systems[J]. IEEE Trans on Automatic Control, 1992,37 (9): 1325-1341.
  • 7DENG Z L,XU Y.Descriptor Wiener state estimators [J]. Automatica, 2000,36(11):1761-1766.
  • 8邓自立.Kalman 滤波与Wiener滤波--现代时间序列分析方法[M].哈尔滨:哈尔滨工业大学,2001.(DENG Zili. Kalman Filtering & Wiener Filtering-Modern Time Series Analysis Approach [M].Harbin: Harbin Institute of Technology Press,2001.)
  • 9SHIELD D N.Observers for singular discrete-time descriptor systems [J]. Control & Computers, 1994,22(2):58-64.
  • 10ANDERSON B D O,MOORE J B. Optimal Filtering [M].Englewood Cliffs,NJ: Prentice-Hall,1979.

共引文献93

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部