摘要
函数论研究的一个分支就是亚纯函数在复合意义下的因子分解理论,而分解论研究中所用的工具和方法之一就是函数的增长性.本文除了对函数增长性研究予以简要回顾外,还证明了f和g为超越整函数时,有limr→∞logM(r,f(g))logM(r,g)=∞和f为超越亚纯函数、g为非常数多项式时有limr→∞T(r,f(g))T(r,g)=∞.
One of the branches of function theory research is the factorization theory of meromorphic function under composition, and the function growth is one of the main tools and ways which are used in the research of factorization. After briefly reviewing of function growth research, this paper proved that when f and g are transcendental entire function lim r→∞logM(r,f(g))/logM(r,g)=∞ , and f are the transcendental meromorphic function, and when g is nonconstant polynomial,lim r→∞T(r,f(g))/T(r,g)=∞.
出处
《海南大学学报(自然科学版)》
CAS
2006年第1期60-65,共6页
Natural Science Journal of Hainan University
关键词
函数增长性
分解论
特征函数
级
型
亏量
function growth
factorization theory
eigenfunction
grade
type
deficient number