期刊文献+

生理参数及药物注射方式对球形实体肿瘤中药物输运的影响 被引量:3

Effect of physiological parameters and drug injection-methods on drug delivery in spherical solid tumor
下载PDF
导出
摘要 目的研究球形实体肿瘤中生理参数对药物输运的影响,以及探讨有较好效果的药物注射方式。方法设肿瘤中毛细血管网成球对称分布,肿瘤中的毛细血管表面积和肿瘤体积之比为半径的函数。肿瘤间质为多孔介质,化学药物透过毛细血管壁进入肿瘤间质,在肿瘤间质中输运满足扩散方程。肿瘤外正常组织富含血管和淋巴,药物能被淋巴管吸收,药物输运采用改进的药代动力学模型。用肿瘤中各部位药物浓度维持在最小药物浓度MEC水平以上的时间曲线面积(AUC)来衡量药物的效果。结果增大肿瘤间质中毛细血管对药物的通透性P,提高药物在肿瘤间质的扩散系数D,AUC的值均增大。在给出的六种给药方式中,分时段连续滴注和等时间间隔一次性注射的给药方式,它们的AUC值最大。结论增大肿瘤间质中毛细血管对药物的通透性,提高药物在肿瘤间质的扩散系数,以及采用分时段连续滴注和等时间间隔一次性注射的给药方式,有利于肿瘤的治疗。 Objective To investigate the effect of physiology parameter and drug injection-methods on drug delivery in solid tumor. Methods The distributing of the tumor vascular is sphere-symmetry, and the surface areas per unite volume for blood vessels is a function of radius. The tumor interstitium is considered as porous medium and drug could pass throughthe microvascular into it. The drug in tumor interstitium is transported by diffusion. The interstitium of normal tissue contain vessels and lymphatic, and the drug can be absorbed by lymphatic. In the normal tissue an advanced pharmacokinetic model is considered. The area under the curve (AUC) of drug concentration which is higher than minimum effective concentration (MEC) in tumor during 24 hours is used to evaluate the treatment of drug. Results Increasing vascular permeability coefficient P and the drug diffusion coefficient D, AUC will increase. In the six injection-methods, injecting by continuing-dropping in separated time periods or bolus injection in several times with the same interval could obtain the highest AUC. Conclusion Increasing vascular permeability coefficient, raising the drug diffusion coefficient, and injecting by continuing-dropping in separated time periods or bolus injection in several times with the same interval are more useful for treatment of tumor.
出处 《医用生物力学》 EI CAS CSCD 2006年第1期20-26,共7页 Journal of Medical Biomechanics
基金 国家自然科学基金(NO.10372026)
关键词 实体肿瘤 药物输运 药物注射方式 最小有效药物浓度 Solid tumor Drug delivery Injection-methods Minimum effective concentration
  • 相关文献

参考文献12

  • 1Brian SK,Frank MC,F.Nicholas Franano,et al.Tumor Transport Physiology:Implications for Imaging and ImagingGuided Therapy [J].A JR,2001,177:747-753.
  • 2Baxter LT,Jain RK.Transport of Fluid and Macromolecules in Tumors:Ⅰ.Role of interstitial Pressure and Convection [J].Microvasc.Res,1989,37:77-104.
  • 3Baxter LT,Jain RK.Transport of Fluid and Macromolecules in Tumors:Ⅱ.Role of Heterogeneous Perfusion and Lymphatics[J].Microvasc.Res,1990,40:246-263.
  • 4雷晓晓,吴望一,温功碧,陈建国.恶性肿瘤的传质问题(Ⅱ)——药物传输部分[J].应用数学和力学,1998,19(12):1063-1070. 被引量:4
  • 5许世雄,王庆伟.实体肿瘤不均匀血液灌注对流体流动的影响[J].水动力学研究与进展(A辑),2004,19(1):46-52. 被引量:4
  • 6Osdol W,Fujimori K,Weinstein JN.An analysis of monoclonal antibody distribution in microscopic tumor nodules:consequences of a "binding site barrier"[J].Cancer Res,1991,51,4776-4784.
  • 7Pluen A,Boucher Y,Ramanujan S et al.Role of tumor-host interaction in interstitial diffusion of macromolecules:cranial vs.subcutaneous tumors[J].Proc.Natl.Acad.Sci.USA,2001,98:4628-4633.
  • 8Kedem O,and Katchalsky A.Thermodynamic analysis of permeability of biological membranes to non-electrolytes[J].Biochim Biophs Acta.1958,27:229-246.
  • 9Rippe B,Haraldsson B.Flyuid and protein fluxes across small and large pores in the microvasculature.Application of two-pores equations[J].Acta Physiol.Scand,1987,104:318-336.
  • 10EL-Kareh AW,Secomb TW.Theoretical models for drug delivery to solid tumor[J].Critical Reviews in Biomedical Engineering,1997,25(6),503-571.

共引文献6

同被引文献13

  • 1高昊,许世雄,蔡颖,M.W.Collins.肿瘤血管生成的二维数值模拟[J].力学季刊,2005,26(3):468-471. 被引量:14
  • 2EL-Kareh AW,Secomb TW.Theoretical models for drug delivery to solid tumor[J].Critical Reviews Biomedical Engineering,1997,25(6),503-571.
  • 3Brian SK,Frank MC,F.Nicholas Franano et al.Tumor transport physiology:implications for imaging and imaging-guided therapy[J].AJR,2001,177:747-753.
  • 4Baxter LT,Jain RK.Transport of fluid and macromolecules in tumors:I.Role of interstitial pressure and convection[J].Microvasc Res,1989,37:77-104.
  • 5Jain,RK.Transport of molecules,particles,and cells in tumors[J].Am Res Biomed Eng,1999,1:241-263.
  • 6Baxter LT,Jain RK.Transport of fluid and macromolecules in tumors:Ⅱ.Role of heterogeneous perfusion and lymphatics[J].Microvasc Res,1990,40:246-263.
  • 7Anderson ARA and Chaplain MAJ.Continuous and discrete mathematical models of tumor-induced angiogenesis[J].Bulletin Mathematical Biology,1998,60:857-900.
  • 8Baxter LT,Jain RK.Transport of fluid and macromolecules in tumors.Ⅲ.Role of binding and metabolism[J].Microvasc Res,1991,41:5-23.
  • 9Kedem O,and Katchalsky A.Thermodynamic analysis of permeability of biological membranes to non-electrolytes[J].Biochim Biophs Acta,1958,27:229-246.
  • 10Osdol W,Fujimori K,Weinstein JN.An analysis of monoclonal antibody distribution in microscopic tumor nodules:consequences of a "binding site barrier"[J].Cancer Res,1991,51,4776-4784.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部