期刊文献+

Lorentz空间上单调函数的加权不等式

Weighted inequalities for monotone functions in Lorentz spaces
下载PDF
导出
摘要 证明了单调函数在Lorentz空间上的加权不等式,作为应用,得到了某些积分算子的双权Lorentz范数不等式的特征刻划. The weighted inequalities for monotone functions in Lorentz spaces was proved. As application, the characterizations of two weights Lorentz norm inequalities for some integral operators were obtained.
作者 吴柏森
出处 《长沙理工大学学报(自然科学版)》 CAS 2006年第1期77-83,共7页 Journal of Changsha University of Science and Technology:Natural Science
关键词 加权不等式 LORENTZ空间 HARDY算子 weighted inequality Lorentz space hardy operator
  • 相关文献

参考文献12

  • 1[1]E Sawyer.Boundedness of classical operators on classical Lorentz spaces[J].Studia Math,1990,(96):145-158.
  • 2[2]V D Stepanov.Integral operators on the cone of monotone functions [ J ].J London Math Soc,1993,(48):669-681.
  • 3[3]H P Hcinig,A Kufner.Hardy operators of monotone functions and sequences in Orlicz spaces [ J ].J London Math Soc,1996,(53):256-270.
  • 4[4]C Bennett,R Sharplry.Interpolation of operators[A].Pure and Applied Math[ C].Boston:Academic Press,1988.
  • 5[5]H M Chung,R A Hunt,D S Kurtz.The hardy-littlewood maximal function on l(p,q) [ J ].Indiana Univ Math J,1982,(31):109-120.
  • 6[6]R A Hunt.Onl(p,q) spaces[J].Enseign Math,1996,(12):249-276.
  • 7[7]V Kokilashvili,M Krbec.Weighted inequalities in Lorentz and Orlicz spaces[M].Singapore:World Scientific,1991.
  • 8[8]J Lindenstrauss,L Tzafriri.Classical banach spaces I[M].New York:Springer-Verlag,1997.
  • 9[9]E Lomakina,V D Stepanov.On the compactness and approximation numbers of hardy-type integral operators in Lorentz spaces[J].J London Math Soc,1996,(53):369-382.
  • 10[10]B Opic,A Kufner.Hardy-type inequalities [ A ].Pitman Research Notes in Math Ser [ C ].Harlow:Longman,1990.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部