期刊文献+

极小化最大完工时间的单机分批加工问题(英文) 被引量:2

Minimizing Makespan in Single-Machine Batch Processing
下载PDF
导出
摘要 本文考虑极小化最大完工时间的单机分批加工问题.设有n个工件和一台批加工机器.每个工件有一个释放时间和一个加工时间.批加工机器可以同时加工b(b<n) 个工件.一个批次的加工时间是该批次所包含所有工件的加工时间的最大者.在同一批次中加工的工件有相同的完工时间,即它们的共同开始时间加上该批次的加工时间.对于极小化最大完工时间问题,本文给出了一个多项式时间近似方案(PTAS).该算法的总运行时间为O(n log n+C·n),C仅与精度∈有关.这一结果改进了已有的两个多项式时间近似方案. We consider the problem of minimizing the maximum completion time (makespan) on a batch machine. In this problem, we axe given n jobs and a batch machine. Each job is characterized by a release time and a processing time. The batch machine can process up to b (b 〈 n) jobs as a batch simultaneously. The processing time of a batch is equal to the longest processing time among all jobs in the batch, jobs processed in the same batch have the same completion time, i.e., their common starting time plus the processing time of the batch. We present a polynomial time approximation scheme (PTAS) for this problem. The overall running time of our PTAS is O(nlogn + C · n), where C depends only on the accuracy ε. The result improves the previous two PTASs for the problem.
出处 《运筹学学报》 CSCD 北大核心 2006年第1期31-37,共7页 Operations Research Transactions
基金 Supported by the National Natural Science Foundation of China under fund numbers 10271065 and 60373025the Science and Technology Research Key Item of the Ministry of Education of Chinathe Science and Technology Development Foundation of Tianjin Municipal Education Commission under No.20051519.
关键词 运筹学 近似算法 分批加工 排序 释放时间 最大完工时间 Operation research, Approximation algorithms, batch processing, scheduling, release times, makespan
  • 相关文献

参考文献9

  • 1C.Y.Lee,R.Uzsoy and L.A.Martin Vega.Efficient algorithms for scheduling semiconductor burn-in operations.Operations Research,1992,40:764~775.
  • 2R.L.Graham,Lawler,J.K.Lenstra and A.H.G.Rinnooy Kan.Optimization and approximation in deterministic sequencing and scheduling:a survey.Annals of Discrete Mathematics,1979,5:87~326.
  • 3C.Y.Lee and R.Uzsoy.Minimizing makespan on a single batch processing machine with dynamic job arrivals,Technical Report,Department of Industrial and System Engineering,University of Florida,January 1996.
  • 4P.Brucker,A.Gladky,H.Hoogeveen,M.Y.Kovalyvov,C.N.Potts,T.Tautenhahn and S.L.van de Velde.Scheduling a batching machine.Journal of Scheduling 1998,1:31~54.
  • 5C.S.Sung and Y.I.Choung.Minimizing makespan on a single burn-in oven in semiconductor manufacturing.European Journal of Operational Research,2000,120:559~574.
  • 6X.Deng,C.K.Poon and Y.Zhang.Approximation algorithms in batch processing,In The 8th Annual International Symposium on Algorithms and Computation,Volume 1741 of Lecture Notes in Computer Science,153~162,Chennai,India,December 1999,Springer-verlag.
  • 7C.K.Poon and P.X.Zhang.Minimizing makespan in batch machine scheduling.ISAAC 2000:386~397.
  • 8C.H.Papadimitriou and Kenneth Steiglitz.Combinatorial optimization:algorithms and complexity,Prentice-Hall,Englewood Cliffs,New Jersey,1982.
  • 9Foto Afrati,Evripidis,Chandra Chekuri,David Karger,Claire Kenyon,Sanjeev Khanna,Ioanhis Milis,Maurice Queyranne,Martin Skutella,Cliff Stein,Maxim Sviridenko,Approximation schemes for minimizing average weighted completion time with release dates,the proceeding of the 40th Annual Symposium on Foundations of Computer Science,New York (Oct.1999) 32~43.

同被引文献73

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部