期刊文献+

关于谱半径达到第二大的赋权树(英文) 被引量:5

On the Weighted Trees which have the Second Largest Spectral Radius
下载PDF
导出
摘要 赋权图的谱的研究已经被用来解决很多实际问题,网络设计以及电路设计实际上都依赖于赋权图.本文主要研究的是赋权树的谱半径,从而得到赋权树谱半径达到次大的是双星图Sn-3,1ω*. It is well known that the spectrum of weighted graphs are often used to solve problems. This is because graphs of the design of networks or electronic circuits are usually weighted. In this paper, the spectral radii of trees with edge weights is discussed. We prove that the weighted double-star Sn-3,1^w* has the second largest spectral radius of all the weighted tress with n vertices.
出处 《运筹学学报》 CSCD 北大核心 2006年第1期81-87,共7页 Operations Research Transactions
基金 Research supported by NNSF of China(No. 10271048)the Science and Technology Commission of Shanghai Municipality (No.04JC14031)NSF of Shanghai(05ZR14046)
关键词 运筹学 赋权树 图的谱半径和特征向量 Operation research, weighted trees, graph eigenvalue and eigenvector
  • 相关文献

参考文献3

  • 1Biggs N L.Algebraic Graph Theory.Cambrige:Cambrige University Press,1993.
  • 2Yang Huazhang,Hu Guanzhang and Hong Yuan.Bounds of Spectral Radii of Weighted Trees.Tsinghua Science and Technology,2003,8(5):517~520.
  • 3Baofeng Wu,Enli Xiao and Hong Yuan.The spectral radius of trees on k pendant vertices.Linear Algebra and its Applications,2005,395:343~349.

同被引文献14

  • 1POLJAK S. Minimum spectral radius of a weighted graph [J]. Linear Algebra Appl., 1992, 171: 53-63.
  • 2YANG Huazhong, HU Guanzhang, HONG Yuan. Bounds of special radii of weighted trees [J]. Tsinghua Sci. Technol., 2003, 8(5): 517-520.
  • 3CVETKOVIC D M, DOOB M, SACHS H. Spectra of Graphs [M]. New York, Academic Press, 1980.
  • 4GUO Jiming, TAN Shangwang. On the spectral radius of trees [J]. Linear Algebra Appl., 2001, 329(1-3): 1-8.
  • 5CVETKOIC D, DOOB M H. Sachs of Graphs-theoy and applications[M]. Third. Johann: Johann Am- brosius Barth Verlag,1995.
  • 6CVETKOVIC D, ROWLINSON P, SIMIC S. Eigens- pace of graphs[M]. Combridge: Combridge Universi- ty Press, 1997.
  • 7HOFMEISTER M. On the two largest eigenvalues of tree[J]. Linear Algebra Appl, 1997 (260) : 43-59.
  • 8CHANG An, HUANG Q. Ordering tree by their lar- gest eigenvalues[J]. Linear Algebr Appl,2003(370): 175-184.
  • 9LIN Wen-shui, GUO Xiao-{eng. Ordering tree by their largest eigenvalues [J]. Algebr Appl, 2003 (370) : 175-184.
  • 10YANG Hua-zhang, HU Guang-zhang, HONG Yuan. Bounds ofspectral radii of weighted trees[J]. Tsinghua Science and Techonlogy, 2003,8 (5): 517- 520.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部