摘要
对于任意的正整数(?),强连通图G的顶点子集D被称为距离(?)-控制集,是指对于任意顶点v(?)D,D中至少含有一个顶点u,使得距离dG(u,v)≤(?).图G距离(?)- 控制数γe(G)是指G中所有距离(?)-控制集的基数的最小者.本文给出了广义de Bruijn 和广义Kautz有向图的距离(?)-控制数的上界和下界,并且给出当它们的距离2-控制数达到下界时的一个充分条件.从而得到对于de Bruijn有向图B(d,k)的距离2-控制数γ2(B(d,k))= .在该文结尾,我们猜想Kautz有向图K(d,k)的距离2-控制数γ2(K(d,k))= .
The distance l-domination number rl(G) of a strongly connected digraph G is the minimum number r for which there is a set D 包含 V(G) with cardinality r such that any vertex v 不属于 D can be reached within distance l from some vertex in D. In this paper, we establish a lower bound and an upper bound for rl of a generalized de Bruijn digraph and a generalized Kautz digraph, and also give a sufficient condition for these digraphs whose r2 are equal to the lower bounds. As a consequence, for the de Bruijn digraph B(d, k), we determine that r2(B(d, k)) = [d^k/(d^2+d+1)] . At the end of this paper, we conjecture r2(K(d,k))=[(d^k+d^k-1)/(d^2+d+1)]
出处
《运筹学学报》
CSCD
北大核心
2006年第1期88-94,共7页
Operations Research Transactions
基金
The work was supported partially by NNSF of China (No.10271114).
关键词
运筹学
距离控制数
控制数
广义de
BRUIJN有向图
广义Kautz有向图
Operation research, distance domination numbers, domination numbers, generalized de Bruijn digraphs, generalized Kautz digraphs