期刊文献+

广义de Bruijn和Kautz有向图的距离控制数(英文) 被引量:6

Distance Domination Numbers of Generalized de Bruijn and Kautz Digraphs
下载PDF
导出
摘要 对于任意的正整数(?),强连通图G的顶点子集D被称为距离(?)-控制集,是指对于任意顶点v(?)D,D中至少含有一个顶点u,使得距离dG(u,v)≤(?).图G距离(?)- 控制数γe(G)是指G中所有距离(?)-控制集的基数的最小者.本文给出了广义de Bruijn 和广义Kautz有向图的距离(?)-控制数的上界和下界,并且给出当它们的距离2-控制数达到下界时的一个充分条件.从而得到对于de Bruijn有向图B(d,k)的距离2-控制数γ2(B(d,k))= .在该文结尾,我们猜想Kautz有向图K(d,k)的距离2-控制数γ2(K(d,k))= . The distance l-domination number rl(G) of a strongly connected digraph G is the minimum number r for which there is a set D 包含 V(G) with cardinality r such that any vertex v 不属于 D can be reached within distance l from some vertex in D. In this paper, we establish a lower bound and an upper bound for rl of a generalized de Bruijn digraph and a generalized Kautz digraph, and also give a sufficient condition for these digraphs whose r2 are equal to the lower bounds. As a consequence, for the de Bruijn digraph B(d, k), we determine that r2(B(d, k)) = [d^k/(d^2+d+1)] . At the end of this paper, we conjecture r2(K(d,k))=[(d^k+d^k-1)/(d^2+d+1)]
作者 田方 徐俊明
出处 《运筹学学报》 CSCD 北大核心 2006年第1期88-94,共7页 Operations Research Transactions
基金 The work was supported partially by NNSF of China (No.10271114).
关键词 运筹学 距离控制数 控制数 广义de BRUIJN有向图 广义Kautz有向图 Operation research, distance domination numbers, domination numbers, generalized de Bruijn digraphs, generalized Kautz digraphs
  • 相关文献

参考文献8

  • 1A.E.Barkuskas,L.H.Host,Finding efficient dominating sets in oriented graphs,Congr,Numer.,98 (1993),27-32.
  • 2J.A.Bondy and U.S.R.Murty,Graph Theory with Applications.New York:North Holland,1976.
  • 3M.Fischermann and L.Volkmann,Graphs having distance-n domination number half their order.Discrete Applied Math.,120 (2002),97-107.
  • 4J.Ghoshal,R.Laskar,D.Pillone,Topics on domination in directed graphs,in Domination in Graphs (eds.T.W.Haynes,S.T.Hedetniemi,P.J.Slater),Marcel Dekker,New York,(1998),pp.401-437.
  • 5Y.Kikuchi and Y.Shibata,On the domination numbers of generalized de Bruijn digraphs and generalized Kautz digraphs.Inform.process.Lett.,86 (2003) 79-85.
  • 6A.Meir and and J.W.Moon,Relation between packing and covering number of a tree.Pacific Journal of Mathematics,61(1) (1975),225-233.
  • 7P.J.Slater,R-dominations in graphs.J.Assoc.Comput.Macg.,23 (1976),446-460.
  • 8N.Sridharan,V.S.A.Subramanian and M.D.Elias,Bounds on the Distance Two-Domination Number of a Graph.Graphs and Combinatorics.,18 (2002),667-675.

同被引文献29

  • 1田方,徐俊明.关于图的距离控制数的上界(英文)[J].中国科学技术大学学报,2004,34(5):529-534. 被引量:2
  • 2周涛,徐俊明,刘隽.关于图的直径和平均距离(英文)[J].运筹学学报,2004,8(4):33-38. 被引量:2
  • 3鲁勤,单而芳,赵敏.(k,l)-kernels in line digraphs[J].Journal of Shanghai University(English Edition),2006,10(6):484-486. 被引量:1
  • 4IMASE M,ITOH M.Design to minimize diameter on building block network[J].IEEE Transactions on Computers,1981,30(6):439-442.
  • 5IMASE M,ITOH M.A design for directed graphs with minimum diameter[J].IEEE Transactions on Computers,1983,C32(8):782-784.
  • 6BERMOND J C,PEYRAT C.De Bruijn and Kautz networks:a competitor for the hypercuber?[M]//ANDRE F,VERJUS J P.Hypercuber and distributed computers.North-Holland:Elsevier Science Publishers B V,1989:279-293.
  • 7Xu Jun-ming.Combinatorial network theory[M].Beijing:Science Press,2007:112-131 (in Chinese).
  • 8KIKUCHI Y,SHIBATA Y.On the dominatation numbers of generalized de Bruijn digraphs and generalized Kautz digraphs[J].Information Processing Letters,2003,86(2):79-85.
  • 9SHAN E F,CHENG T C E,KANG L Y.Absorbant of generalized de Bruijn digraphs[J].Information Processing Letters,2007,105(1):6-11.
  • 10HASUNUMA T,KIKUCHI Y,MORI T,SHIBATA Y.On the number of cycles in generalized Kautz digraphs[J].Discrete Mathematics,2004,285(1-3):127-140.

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部