摘要
本文研究了在三种情况下直线上的区间图的最小独立控制集的计算问题:1.相交于一点的直线簇,2.除一条直线外,其余的直线都平行的直线簇,3.一条直线和直线上t个赋权的点,使得其最小独立控制集所覆盖的点的权和最大.本文给出了这三个问题的多项式时间算法,问题1可以在O(n)时间内求解,借助动态规划方法问题2和问题 3分别可以在O(n log n),O(n+t)时间内求解.
We study the problem of computing minimum independent dominating sets of n intervals on lines in three cases: (1) the lines intersect at a single point, (2) all lines except one are parallel, and (3) one line with t weighted points on it and the minimum independedt dominating set must maximize the sum of the weights of the points covered. we propose polynomial-time algorithms for these problems, the first problem has an O(n)-time solution, while the second and the third problems are solved by dynamic programming algorithms, requiring O(n log n) and (n + t)-time, respectively.
出处
《运筹学学报》
CSCD
北大核心
2006年第1期107-115,共9页
Operations Research Transactions
基金
国家自然科学基金资助课题(10101010)
上海市重点学科建设资助项目和上海市教委青年科学基金资助项目(01QN6262).
关键词
运筹学
区间图
独立控制集
算法
Operations research, interval graphs, independent dominating set, algorithms