期刊文献+

带子群自组织蠕虫算法及其在多模态问题中的应用 被引量:3

Subgroup-self-organizing Worm Algorithm and Application in Multi-modal Function Optimization
下载PDF
导出
摘要 提出了一种全新的多模态遗传算法——带子群的自组织蠕虫算法(SSOMA)。该算法的基本思想是:通过初始群体的前期寻优找到峰值点的所在邻域;随后分别在这些邻域内选择少量的个体组成子群,在这些子群中再利用自组织蠕虫算法进行后期寻优,从而找到所有的峰值点,该算法极大地降低了计算的复杂度、提高了收敛速度。最后,用经典测试函数对该算法进行了仿真实验,并进行了计算复杂度分析,结果表明该算法在多模态函数优化方面具有较为理想的应用前景。 In this paper, subgroup-self-organizing worm algorithm (SSOMA) is presented based on the emergence method in complexity research and the classical searching methods, The main idea of this algorithm can be described as follow: search the neighboring regions of peak points through the prophase optimization; select a small quantity of units to build up subgroup in every region, and process the anaphase optimization in these subgroups, by which the peak points will be found in these subgroups. The computation complexity can be lowered obviously and the convergence rate can also be improved efficiently by this method. At last, experiments are given to solve several typical multi-modal function optimization problems. The analysis results on the precision and computation complexity show that SSOMA is perfect for the multi-modal optimization,
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第7期182-184,共3页 Computer Engineering
基金 国家自然科学基金资助项目(70572045)
关键词 带子群的自组织蠕虫算法 多模态优化 遗传算法 涌现 Subgroup-self-organizing worm algorithm (SSOWA) Multi-modal optimization Genetic algorithms Emergence
  • 相关文献

参考文献6

  • 1Cavicchio D J.Adaptive Search Using Simulated Evolution[D].University of Michigan,1970.
  • 2Perry Z A.Experimental Study of Speciation in Ecological Niche Theory Using Genetic Algorithms[D].University of Microfilms,1984.
  • 3Goldberg D E,Richardson J.Genetic Algorithms with Sharing for Multi-modal Function Optimization[C].Proceedings of the second International Conference on Genetic Algorithms.Cambridge,1987:41-49.
  • 4Holland J H.Adaptation in Natural and Artificial System:An Introduction Analysis with Applications to Biology,Control,and Artificial Intelligence[M].The University of Michigan Press,1975.
  • 5刘洪杰,王秀峰.多峰搜索的自适应遗传算法[J].控制理论与应用,2004,21(2):302-304. 被引量:23
  • 6Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Proceeding of IEEE Int'l Conf.on Neural Networks,IEEE Service Center,Piscataway,NJ,1995,4:1942-1948.

二级参考文献6

  • 1MICHALEWICZ Z. Genetic Algorithms + Data Structures = Evolution Programs [M]. Berlin, Heidelberg, New York: Springer-Verlag, 1994.
  • 2WANG Xiufeng, ELBULUK M E. The application of genetic algorithm with neural networks to the induction machines modeling [J].System Analysis Modeling Simulation, 1998,31:93- 105.
  • 3HOLLAND J H. Adaptation in Natural and Artificial System: An Introduction Analysis with Applications to Biology, Control and Artificial Intelligence [M]. Michigan, USA: The University of Michigan Press, 1975.
  • 4GOLDBERG D E, RICHARDSON J. Genetic algorithms with sharing for multimodel function optimization [C]//Proc of the Second lnt Confon Genetic Algorithms: July 28 - 31, 1987 at the Massachusetts Institute of Technology. Massachusetts, USA: The Massachusetts Institute of Technology Press, 1987:41 -49.
  • 5WILLIAM M. Spears, simple subpopulation schemes [C]//Proc of the Third Annual Conference on Evolutionary Programming, Feb. 24- 26, 1994 at San Diego, California, USA. Singapore: World Scientific, 1994:296 - 307.
  • 6刘洪杰.[D].天津:南开大学,2002.

共引文献22

同被引文献45

引证文献3

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部