期刊文献+

混煤煤灰软化温度的实验研究与预测 被引量:5

Experimental Research and Forecast of the Softening Temperature of Blended Coal Ash
下载PDF
导出
摘要 从某电厂700 MW机组锅炉取混煤灰样,在智能灰熔点测定仪上采用角锥法对其进行软化温度测定。实验结果表明,混煤煤灰软化温度与掺混比呈非线性规律。采用径向基神经网络(RBFNN)在MATLAB环境下建立了混煤软化温度的智能预测模型。为检验模型的预测效果,以实验的8个混煤煤灰作为受验样本,应用该网络模型对其软化温度进行预测。预测表明:RBFNN模型的预测结果与实验结果吻合良好,二者的最大相对误差为3.79%,平均相对误差为1.56%,预测效果远远优于线性预测模型。 Samples of blended coal ash were taken from the boiler of a power plant 700MW unit.Their softening temperature was measured by a pyramid method on an intelligent ash-melting point measuring device.Experimental results indicate that the softening temperature of blended coal ash and blend/mixture ratio assume a nonlinear relationship.Through the use of a radial-based function neural network(RBFNN) an intelligent forecasting model for the blended-coal softening temperature was set up under MATLAB environment.To verify the forecast effectiveness of the model,with 8 blended coal ash samples under test serving as samples to be examined a forecast of their softening temperature was conducted using the above-mentioned RBFNN-based model.The results of the forecast indicate that the forecast results of the RBFNN model agree well with those of experiments.The maximum relative error between the above two results is 3.79% with the average relative error being 1.56%.The effectiveness of the forecast has been found to be by far superior to that of a linear forecast model.
出处 《热能动力工程》 EI CAS CSCD 北大核心 2006年第2期179-182,共4页 Journal of Engineering for Thermal Energy and Power
关键词 混煤 软化温度 预测 径向基神经网络 非线性 blended coal,softening temperature,forecast,radial-based function neural network,nonlinear
  • 相关文献

参考文献9

二级参考文献24

共引文献163

同被引文献47

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部