期刊文献+

高压配电网无功/电压的日分段综合优化控制 被引量:29

Time-interval Based Comprehensive Control Strategy for Daily Voltage/VAR Optimization in Distribution Systems
下载PDF
导出
摘要 为了给出配电网全天无功/电压优化调度方案,提出了一种参照电容器最大允许动作次数对次日控制时段进行划分的启发式算法,该算法综合考虑降损效益和有载调压变压器(OLTC)、并联补偿电容器的操作费用。在优化分段的基础上,根据各控制时段内不同时刻的网损及电压质量,再决定是否用OLTC进行二次调节。某实际系统的算例结果表明,所述算法及控制策略能在满足电压质量、降低网络损耗的同时,有效地简化了无功电压调节设备的操作。 A new time-interval based comprehensive optimization control strategy is presented for reducing the daily energy loss, improving the voltage quality and simplifying the operations of on-load tap changer (OLTC) and shunt capacitor (SC). The algorithm considers not only the reduction of energy loss but also the operation cost of OLTCs and SCs. A heuristic and iterative algorithm is introduced to determine the control period of the next day, in which the number of the control period depends on the maximal allowable switching times of SCs. After the partition results being achieved, a secondary control strategy of the OLTCs is implemented depending on the voltage quality and energy loss reduction in the period of specified interval. Case studies illustrate that the proposed partition algorithm and control strategy can effectively reduce the daily energy loss, improve the voltage quality and simplify the control operations.
出处 《电力系统自动化》 EI CSCD 北大核心 2006年第7期5-9,共5页 Automation of Electric Power Systems
基金 国家重点基础研究发展计划(973计划)资助项目(2004CB217905)中华电力教育基金会许继奖教金资助项目。
关键词 无功电压优化 分时段控制 二次调节 配电网 reactive power and voltage optimization time-interval based control strategy secondary control strategydistribution system
  • 相关文献

参考文献10

二级参考文献35

  • 1马晋弢,杨以涵.遗传算法在电力系统无功优化中的应用[J].中国电机工程学报,1995,15(5):347-353. 被引量:144
  • 2周双喜,杨彬.实现无功优化的新算法──遗传算法[J].电力系统自动化,1995,19(11):19-23. 被引量:54
  • 3文福拴,韩祯祥.模拟进化优化方法在电力系统中的应用综述(上)[J].电力系统自动化,1996,20(1):59-62. 被引量:18
  • 4潘正军 康立山.演化计算[M].北京:清华大学出版社,1998..
  • 5孙宏斌.电力系统全局无功优化控制的研究:博士学位论文[M].北京:清华大学,1996..
  • 6王耀瑜 张伯明 孙宏斌 等(Wang Yaoyu Zhang Boming Sun Hongbin et al).一种基于专家知识的电力系统电压/无功分级分布式优化控制分区方法[J]..
  • 7[11]D.W.Hillis.Co-evolving parasites improve simulated evolution as an optimization procedure[C].Artificial Life Ⅱ,USA,California,1991,313-314.
  • 8[12]P.Husbands,E Mill.Simulated co-evolution as the mechanism for emergent planning and scheduling[C].Proceedings of the Fourth International Conference on Genetic Algorithms,USA,California,1991,264-270.
  • 9[13]M.A.Potter,K.A.De Jong.Cooperative coevohltion:an architechture for evolving coadapted subcomponents [J].Evolutionary Computation,2000,8(1):1-29.
  • 10[14]Haoyong Chen,Xifan Wang.Cooperative coevolutionary algorithm for unit commitment [J].IEEE Transaction on PWRS,2002,17(1):128-133.

共引文献422

同被引文献254

引证文献29

二级引证文献224

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部