摘要
给出了复正定矩阵的一些等价特征及其有关的性质,如:复矩阵A=H+iS(这里H和S均为Hermite矩阵)是复正定的(复半正定的)当且仅当H是正定的(半正定的);复矩阵A是复正定的当且仅当存在可逆矩阵P使P*AP=In+iDn,其中In为n阶单位矩阵,Dn为n阶实对角矩阵。同时得到了复正定矩阵特征值的两个不等式。
Some equivalent characteristics of complex positive definite matrix are given, such as a complex matrix A=H+iS is complex positive definite (or complex positive semidefinite)if and only if H is positive definite(or positive semidefinite), where H and S are both Hermitian matrix; a complex matrix A is complex positive definite if and only if an invertible matrix P exists such that P* AP=In + iDn,where In is a unit matrix of n -order and Dn is a diagonal matrix and so on. Meanwhile,two inequalities of characteristic values with respect to complex matrix are obtained.
出处
《江汉石油学院学报》
CSCD
北大核心
1996年第2期116-118,123,共4页
Journal of Jianghan Petroleum Institute
关键词
复矩阵
HERMITE矩阵
正规矩阵
酉矩阵
正定性
complex matrix
Hermitian matrix
normal matrix
unitary matrix
positive definiteness