期刊文献+

基于BioMEMS技术的DNA固相萃取芯片的制备 被引量:3

Fabrication of Solid Phase Extraction Deoxyribonucleic Acid Chips Based on Bio-Microelectron-Mechanical System Technology
下载PDF
导出
摘要 基于BioMEMS技术,制备一种新型的Si-PDMS-玻璃结构的DNA固相萃取微流控芯片。在硅基片上制备4种固相载体,分析不同载体的性质和制备特点,优选多孔氧化硅作为萃取DNA的固相载体。对比研究芯片的封装工艺,优选压制法制备PDMS-玻璃盖片,采用粘接技术封装芯片。芯片成功提取老鼠全血中的基因组DNA,提取效率为23.5×10-9g/μL全血,并成功进行PCR反应,达到试剂盒水平。固相萃取微流控芯片具有与其他样品处理芯片、PCR芯片和电泳芯片相集成的潜力,可实现对复杂生物样品的检测和分析。 A novel solid phase extraction (SPE) deoxyribonucleic acid (DNA) microfluidic chip with siliconpolydimethylsiloxane (PDMS)-glass structure was fabricated based on bio-microelectro-mechanical system (BioMEMS) technology. Four kinds of solid phase matrixes were fabricated on silicon substrates, and the characteristics of these different matrixes and the fabrication procedures were analyzed. Thus the porous oxidized silicon was selected as the optimal solid phase matrix for the purification DNA. The different sealing technologies were contrastively developed for sealing chips to form close channels. The PDMS-glass cover was fabricated by using the optimal pressing method and the silicon substrate with the solid phase matrix was bonding with the PDMS-glass cover to accomplish the preparation of the SPE chip. This SPE chip has been used successfully for the purification of genomic DNA from the rat whole blood. The extracted efficiency of DNA is 23.5×10^-9g/μ whole blood and the extracted DNA from the whole blood is successfully amplified by polymerase chain reaction (PCR), which can reach the level of the commercial DNA purification kits. Furthermore, the SPE microfluidic chips have the potential to be integrated with other sample preparation microchips, PCR microchip, capillary electrophoresis microchip and so on to achieve detection and analysis of the complex.biological samples.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2006年第3期433-436,共4页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金重大项目资助(No.20299030 60427001 6051020)
关键词 BioMEMS技术 固相萃取 微流控芯片 封装技术 多孔氧化硅 Bio-microelectro-mechanical system, solid phase extraction, microfluidic chips, sealing technology, porous oxidized silicon
  • 相关文献

参考文献12

  • 1Kopp M U,de Mello A J,Manz A.Science,1998,280:1046~1048.
  • 2Shin Y S,ChoK,Lim S H,Chung S,Park SJ,Chung C,Han DC,ChangJ K.J.Micromech.Microeng.,2003,13:768~774.
  • 3Ross D,Johnson T J,LocascioLE.Anal.Chem.,2001,73(11):2509~2515.
  • 4Ceriotti L,de Rooij N F,Verpoorte E.Anal.Chem.,2002,74:639~647.
  • 5Erickson D,Liu X Z,Krull U,Li D.Anal.Chem.,2004,76(24):7269~7277.
  • 6Tian H,Hu"hmer A F R,Landers J P.Analytical Biochemistry,2000,283:175~191.
  • 7Breadmore M C,Wolfe K A,Arcibal I G,Leung W K,Dickson D,Giordano B C,Power M E,Ferrance J P,Feldman S H,Norris P M,Landers J P.Anal.Chem.,2003,75:1880~1886.
  • 8Cady N C,Stelick S,Batt C A.Biosensors and Bioelectronics,2003,19:59~66.
  • 9Christel LA,Petersen K,McMillan W,Northrup M A.Transactions of the ASME,1999,121:22~27.
  • 10Drott J,Rosengren L,Lindstrom K,Laurell T.Mikrochim.Acta,1999,131:115~120.

同被引文献129

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部