期刊文献+

厄米特三对角复模式的惯量(英文)

Inertia Sets of Hermitian Tridiagonal Ray Patterns
下载PDF
导出
摘要 讨论了元素为0或EIΘ的矩阵称为复模式.当EIΘ=1(EIΘ=-1)时,记EIΘ=+(EIΘ=-).若复模式A满足A=A*,称A为厄米特复模式.得出了复模式是符号模式的推广.设A,B∈MN(C)是给定的两个矩阵,如果存在非奇异矩阵S使得B=SAS*,则称B与A是相合的.利用相合的概念,给出了厄米特三对角复模式的惯量. A matrix whose entries are either 0 or e^iθ, where θ∈R, is called a ray pattern. When e^iθ=1 (respectively, e^iθ=-1), it denoted that e^iθ=+ (respectively, e^iθ=-). If a ray pattern A satisfies A=A^*, such a pattern is called A Hermitian ray pattern. A ray pattern is a natural generalization of the concept of a sign pattern. Let A,B∈Mn(C) be two given matrixes. If there exists a nonsingular matrix S making B=SAS^*, then B is said to be congruent to .4. In this paper, the authors has presented the inertia sets of n ×n Hermitian tridiagonal ray patterns using matrix congruence concept.
机构地区 中北大学数学系
出处 《中北大学学报(自然科学版)》 EI CAS 2006年第1期1-7,共7页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金(10571163) 山西省自然科学基金(20041010)
关键词 符号模式 惯量 厄米特矩阵 复模式 sign pattern inertia Hermitian matrix ray pattern
  • 相关文献

参考文献5

  • 1L I ZHONGSHAN,H A LL F J,JEFFREY L.IRREDUC IB LE POW ERFU L RAY PATTERN M ATRICES[].L INEAR A LGEBRA A PP L.2002
  • 2H A LL F J,L I ZHONGSHAN,W ANG D I.SYMM ETRIC S IGN PATTERN M ATRICES THAT REQU IRE UN IQUE INERTIA[].L INEAR A LGEBRAA PP L.2001
  • 3H A LL F J,L I ZHONGSHAN.INERTIA SETS OF SYMM ETRIC S IGN PATTERN M ATRICES[].N UM ERICA L M ATHJCH INESEU N IVERS ITIES.2001
  • 4SHAO Y AN LING,SUN L IANG,G AO Y UB IN.INERTIA SETS OF TW O CLASSES OF SYMM ETRIC S IGN PATTERNS[].L INEAR A LGEBRAA PP L.2004
  • 5G AO Y UB IN,SHAO Y AN LING.INERTIA LLY ARB ITRARY PATTERNS[].L INEAR AND M U LTILINEAR A LGEBRA.2001

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部