期刊文献+

二维Logistic映射的动力学分析(英文) 被引量:5

Dynamic Analysis of the Coupled Logistic Map
下载PDF
导出
摘要 对二维logistic映射的动力学研究有助于认识和预测更复杂的高维非线性系统的性态.利用解析计算和实验分析相结合的方法揭示出:(1)参数空间中二维logistic映射发生第一次分岔的边界方程;(2)二维logistic映射可按倍周期分岔和Hopf分岔走向混沌;(3)二维logistic映射的吸引盆中周期和非周期区域之间的边界是分形的,这意味着无法预测相平面上点运动的归宿;(4)Mandelbrot-Julia集的结构由控制参数决定,且它们的边界是分形的. Dynamic analysis of the coupled logistic map redounds to know and predict the characteristics of high-dimension complex nonlinear system. Using the method combining calculation and experiment, the following conclusions are shown: (1) The boundary equation of the first bifurcation of the coupled logistic map in the parameter space is given out. (2) Chaotic patterns of the coupled logistic map may emerge out of double-periodic bifurcation and Hopf bifurcation, respectively. (3) The boundary between periodic and non-periodic regions in the attraction basin of the coupled logistic map is fractal, which indicates the impossibility to predict the moving result of the points in phase plane. (4) The structures of the Mandelbrot-Julia sets are determined by the control parameters, and their boundaries have the fractal characteristic.
作者 王兴元 骆超
出处 《软件学报》 EI CSCD 北大核心 2006年第4期729-739,共11页 Journal of Software
基金 国家自然科学基金 辽宁省教育厅高等学校科学技术研究计划~~
关键词 二维LOGISTIC映射 分岔 混沌 MaIldelbmt-Julia集 分形 动力学分析 coupled logistic map bifurcation chaos Mandelbrot-Julia set fractal
  • 相关文献

参考文献25

  • 1May RM.Simple mathematical models with very complicated dynamics.Nature,1976,261:459-467.
  • 2Feigenbaum MJ.Quantitative universality for a class of nonlinear transformations.Journal of Statistical Physics,1978,19(1):25-52.
  • 3Wang XY.Chaos in the Complex Nonlinearity System.Beijing:Electronics Industry Press,2003.91-113 (in Chinese).
  • 4Satoh K,Aihara T.Self-Similar structures in the phase diagram of a coupled-logistic map.Journal of the Physical Society of Japan,1990,59:1123-1126.
  • 5Hastings A.Complex interactions between dispersal and dynamics:Lessons from coupled logistic equations.Ecology,1993,74(5):1362-1372.
  • 6Zengru D,Sanglier M.A two-dimensional logistic model for the interaction of demand and supply and its bifurcations.Chaos,Solitons & Fractals,1996,7(12):2259-2266.
  • 7Guckenheimer J,Holmes P.Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields.Berlin:Springer-Verlag,1983.156-165.
  • 8Eckmann JP.Roads to turbulence in dissipative dynamics system.Reviews of Modern Physics,1981,53:643-649.
  • 9Welch PD.The use of fast Fourier transform for the estimation for the estimation of power spectra:A method based on time averaging over short,modified periodograms.IEEE Trans.on Audio and Electroacoust,1967,15(2):70-73.
  • 10Kaplan JL,Yorke JA.Chaotic behavior of multidimensional difference equations.In:Peitgen HO,Walther HO,eds.Functional Differential Equations and Approximation of Fixed Points.Lecture Notes in Mathematics 730,Berlin:Springer-Verlag,1979.204-227.

同被引文献44

引证文献5

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部