期刊文献+

基于监测数据的特征小波构造及应用 被引量:2

Characteristic Wavelets Construction Based on Monitoring Data and Its Application
下载PDF
导出
摘要 提出了以监测数据为基础构造特征小波提取数据趋势的新方法,研究了第二代小波变换的预测器、更新器与等效滤波器之间的关系,以及根据等效滤波器设计预测器和更新器系数的原理。为了构造基于监测数据的特征小波,在设计预测器和更新器时,综合监测数据样本的信息,以预测器消失矩作为约束条件,以预测误差作为目标函数,使所构造的小波能够反映监测数据的局部特征。采用设计预测器和更新器对监测数据分解、阈值处理和重构,得到监测数据的趋势。该方法在某炼油厂机组的峰峰值趋势分析中准确地描述了峰峰值变化趋势。 This paper put forward a new trend extraction method for monitoring data by constructing characteristic wavelet based on monitoring data. Investigating the relation between predictor and updater of second generation wavelet transform and their equivalent filters, predictor and updater are designed on the basis of the equivalent filters. In order to get the characteristic wavelet, the information of the monitoring data is taken into account. Then considering vanishing moment number of predictor as constraint condition, and regarding prediction error as an objective function, the characteristic wavelet constructed can represent the localized characteristic of the monitoring data. By using the devised predictor and updater for second geueration wavelet transform composition, threshold processing and reconstruction, the data trend can be obtained. The proposed method nicely representes the trend of monitoring data from a machine set in an oil refinery. 2 figs, 7 refs.
出处 《长安大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第2期107-110,共4页 Journal of Chang’an University(Natural Science Edition)
基金 国家自然科学基金项目(50335030) 陕西省自然科学基金项目(2005E205)
关键词 机械工程 监测数据 趋势分析 第二代小波变换 预测器 更新器 mechanical engineering monitoring data trend analysis second generation wavelet transform predictor updater
  • 相关文献

参考文献5

  • 1Sweldens W. The Lifting Scheme: A Construction of Second Generation Wavelets[J]. SIAM J Math Anal,1996, 29(2): 511-546.
  • 2Ercelebi E. Second Generation Wavelet Transformbased Pitch Period Estimation and Voiced/unvoiced Decision for Speech Signals[J]. Applied Acoustics,2003, (64) :25 - 42.
  • 3Claypoole R L, Davis G M, Sweldens W, et al, Nonlinear Wavelet Transforms for Image Coding Via Lifting[J], IEEE Trans on Image Proeesing, 2003, 12(12): 1449 - 1459.
  • 4Claypoole R L, Adaptive Wavelet Transforms Via Lifting[D]. Houston: Rice University, 2000.
  • 5张磊,潘泉,张洪才,戴冠中.小波域滤波阈值参数c的选取[J].电子学报,2001,29(3):400-402. 被引量:64

二级参考文献3

共引文献63

同被引文献10

  • 1田广,唐力伟,栾军英,康海英,田昊.基于时频分布的行星齿轮箱滚动轴承故障诊断研究[J].机械强度,2007,29(1):152-155. 被引量:12
  • 2Sun Z, Chang C C. Structural damage assessment based on wavelet pucker transform[J]. Journal of Structural Engineering, 2002,128 (10):1354-1361.
  • 3Yam I. H, Yan Y J, Jiang J S. Vibration-based damage detection for composite structures using wavelet transform and neural network identification [J]. Com posite Structures, 2003,60 (4) : 403-412.
  • 4Yuen K V, Lam H F. On the complexity of artificial neural networks for smart structures monitoring[J]. Engineering Structures, 2006,28 (7) : 977-984.
  • 5Gros X E, Bousique J, Takahashi K. NDT data fusion at pixel level [J]. NDT and E International, 1999,32(5) :283 -292.
  • 6Johnson E A, Lam H F, Katafygiotis L S, et al. Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data[J]. Journal of Engineering Mechanics, 2004,130 ( 1 ) : 3-15.
  • 7Guo H Y. Structural damage detection using information fusion technique[J]. Mechanical Systems and Signal Processing, 2006,20(5 ) : 1173-1188.
  • 8郭磊,陈进.小波包熵在设备性能退化评估中的应用[J].机械科学与技术,2008,27(9):1203-1206. 被引量:10
  • 9李宁,王亮,王宏亮,那文波.基于小波分析和小波包的电动振动台故障检测方法[J].液压与气动,2009,33(12):52-55. 被引量:2
  • 10申弢,黄树红,韩守木,杨叔子.旋转机械振动信号的信息熵特征[J].机械工程学报,2001,37(6):94-98. 被引量:97

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部