摘要
设x为一无理数具简单的连分式展开x = [a0, a1, a2,…, an].若对无穷多个是标k有ak> n则至少有m个解p/q(p与q互素)使不等式 x - p/q <Cm(1n)q2成立,此处Cm(h) = n2+ 41 +n4+ 4n2+ 2 + (n2+1 2)n n2+ 42m- 1.
Let x be an irrational number with simple continued fraction expansion x=[a0;a1,a1,…,ak,…].If ak≥n for infinitely many indices k, then there are at least m solutions p/q in coprime integers p,q to the inequality |x-p/q|〈1/Cm(n)q^2,where Cm(n)equals to √n^2+4(1+1/(n^4+4n^2+2+(n^2+2)n√n^2+4/2)^m-1)
出处
《数学研究》
CSCD
2006年第1期36-38,共3页
Journal of Mathematical Study