摘要
本文利用分布函数与概率密度之间的关系,以曲线积分为工具,导出随机变量Z=g(X,Y)的概率密度的一般公式。然后对概率统计中的一些重要分布给予比较简单的证明。
The purpose of this paper is to derive the general formula for the probability density of the random variable Z which is equal to g(X,Y) by using the relation between distribution function and probability density and by means of the curvilinear integral.Then some important distributions in probability and statistics are proved briefly.
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
1990年第2期72-80,共9页
Journal of Beijing University of Aeronautics and Astronautics
关键词
随机变量
函数
概率密度
二维
two-dimensional continuous random variable,function,probability density,distribution function,curvilinear integral.