期刊文献+

二阶退化双曲型方程的Cauchy问题(英文) 被引量:2

The Cauchy Problem for Degenerate Hyperbolic Equations of Second Order
下载PDF
导出
摘要 讨论退化秩为0的二阶双曲型方程的Cauchy问题,主要证明了此问题解的存在性和唯一性. This paper deals with the Cauehy problem for the linear hyperbolic equations of second order with degenerate rank 0, mainly the existence and uniqueness of solutions for the Cauehy problem are proved.
作者 闻国椿
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期127-134,共8页 Journal of Sichuan Normal University(Natural Science)
关键词 退化双曲型方程 CAUCHY问题 解的存在唯一性 Degenerate hyperbolic equations Cauchy problem Existence and uniqueness of solutions
  • 相关文献

参考文献5

  • 1Bitsadze A V.Some Classes of Partial Differential Equations[M].New York:Gordon and Breach,1988.
  • 2Bitsadze A V,Nakhushev A N.Theory of degenerating hyperbolic equations[J].Dokl Akad Nauk SSSR,1972,204:1289-1291.
  • 3Protter M H.The Cauchy problem for a hyperbolic second order equation with data on the parabolic line[J].Can J Math,1954,6:542-553.
  • 4Wen G C.Linear and Quasilinear Complex Equations of Hyperbolic and Mixed Type[M].Londan:Taylor Francis,2002.
  • 5闻国椿.退化秩为0的二阶混合型方程斜微商问题解的唯一性(英文)[J].四川师范大学学报(自然科学版),2004,27(2):115-123. 被引量:3

二级参考文献1

共引文献2

同被引文献23

  • 1丁协平.局部FC-空间内Himmelberg型不动点定理的推广(英文)[J].四川师范大学学报(自然科学版),2006,29(1):1-6. 被引量:13
  • 2田有先,胡晓力.p-凸度量空间更广义拟压缩映射不动点迭代[J].四川师范大学学报(自然科学版),2006,29(3):288-293. 被引量:2
  • 3高正晖,罗李平.具有连续时滞的双曲型偏微分方程解的振动性[J].重庆师范大学学报(自然科学版),2007,24(1):11-14. 被引量:8
  • 4Mihalas D,Mihalas B W.Foundations of Radiation Hydrodynamics[M].New York,Oxford:Oxford Univ Press,1984.
  • 5Pomraning G C.The Equations of Radiation Hydrodynamics[M].Oxford,New York:Pergamon Press,1973.
  • 6Benzoni-Cavage S,Denis S.Hyperbolic Problems:Theory,Numerics,Applications[M].Berlin,Heidelberg:Springer-Verlag,2008.
  • 7Anile A M,Blokhin A M,Trakhinin Y L.Investigation of a mathematical model for radiation hydrodynamics[J].Zangew Math Phys,1999,50:677-697.
  • 8Wang J,Xie F.Global existence of strong solutions to the Cauchy problem for a 1D radiative gas[J].J Math Anal Appl,2008,346:314-326.
  • 9Zhong X H,Jiang S.Local existence and finite-time blow-up in multidimensional radiation hydrodynamics[J].J Math Fluid Mech,2007,9:543-564.
  • 10Courant R,Hilbert D.Methods of Mathematical Physics[M].New York:Wiley-Interscience,1963.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部