期刊文献+

一类有边界记忆条件的非线性波动方程解的整体存在和一致衰减

Global Existence and Uniform Decay of Solutions for a Nonlinear Wave Equation with Memory Condition at the Boundary
下载PDF
导出
摘要 研究一类带记忆边界条件的科尔霍夫型波方程,主要讨论其整体解的存在唯一性及能量的衰减性.利用Galerk in近似方法研究方程解的存在唯一性,然后引入松驰函数,利用扰动能量方法证明系统能量的衰减. A class of nonlinear wave equations of Kirehhoff type with memory condition at the boundary are discussed in this paper. The existence and uniqueness of global solutions for the equations are established by Galerkin's approximation method. Then, by using of perturbed energy method it is proved that the energy decay has the same rate as that of the relaxation function.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期147-151,共5页 Journal of Sichuan Normal University(Natural Science)
基金 四川省学位委员会 四川省教育厅重点学科建设基金资助项目
关键词 整体解 GALERKIN方法 渐近性 初边值问题 Global existence Galerkin's method Asymptotic behavior Initial boundary value problem
  • 相关文献

参考文献10

  • 1Santos M L.Global existence and stability for wave eqution of Kirchhoff type with memory condition at the boundary[J].Nonlinear Anal,2003,54:959-976.
  • 2Jiang S,Munoz Rivera J E.A global existence for the Dirichlet problems in nonlinear n-dimensional viscoelasticity[J].Differential Integral Equtions,1996,9(4):791-810.
  • 3Ikerata R.Anote on the global solvability of solutions to some nonlinear wave equtions with dissipative terms[J].Differential Intergral Equations,1995,8(3):607-616.
  • 4赖绍永,严勇.非线性电报方程的整体渐近解[J].四川师范大学学报(自然科学版),2004,27(5):446-450. 被引量:9
  • 5Santos M L.Asymptotic behavior of solutions to wave equtions with a memory condition at the boundary[J].European J Differential Equtions,2001,73:1-11.
  • 6林群,甘在会,王颖.一类带调和势的非线性阻尼Schrdinger方程[J].四川师范大学学报(自然科学版),2004,27(1):22-26. 被引量:7
  • 7Cavalcanti M M,Domingos Cavalcanti V N,Prates J S,et al.Exitence and uniform decay rates for viscoelastic problems with nonlinear boundary damping[J].Differential Integral Equtions,2001,14(1):85-116.
  • 8Cavalcanti M M,Domingos Cavalcanti V N,Prates J S,et al.Existence and uniform decay of solutions of a degenerate equtions with nonlinear boundary memory source term[J].Nonlinear Anal,1999,38:281-294.
  • 9Park J Y,Bae J J,Hyo Jung.Uniform decay of solution for wave eqution of Kirchhofftype with nonlinear boundary damping and memory term[J].Nonlinear Anal TMA,2002,50:871-884.
  • 10Santos M L.Decay rates for solutions of system of wave equtions with memory[J].European J Differential Equtions,2002,38:1-17.

二级参考文献3

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部