摘要
利用射影几何中常用的齐次坐标把Xn+1=(Axn+Bxn-1+C)/(pxn-1+q)用线性形式表出,利用线性代数的理论,得到了方程有最小正周期的一个充要条件,作为应用和例子,给出了最小正周期m=1,2,3,4时的一般表达式.
In this paper the difference equation Xn+1=(Axn+Bxn-1+C)/(pxn-1+q) is expressed as a linear form by using the homogeneous coordinates in projective geometry. From the theory of linear algebra a sufficient and necessary condition is given for the equation to be with the least periodic solution. As an application ,example a general expression is obtained for the equation with the least period m = 1,2,3 and 4.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第2期177-179,共3页
Journal of Sichuan Normal University(Natural Science)
基金
四川省教育厅自然科学重点基金资助项目
关键词
差分方程
齐次坐标
周期解
Difference equations
Homogeneous coordinates
Periodic solution