期刊文献+

模子范畴间的对偶

Duality between Subcategories of Modules
下载PDF
导出
摘要 针对模论中两类重要的模子范畴:投射模范畴与内射模范畴,以及模论中两个重要的概念:sm all模和self-sm all模,对偶地引入了co-sm all模和co-self-sm all模的概念,给出了这两类范畴间对偶的等价刻画,特别地,给出了在Noether情形下余-*-模的刻画. Categories of projective modules and categories of injective modules are two important class in the theory of modules. Small module and self-small module are two important concepts in the theory of modules. The concepts of co-small module and co-self- small module are introduced in this paper. Duality between the categories of projective modules and the categories of injective modules is given. In particular,in the ease of Noether, some characterizations on co- * -module are presented.
作者 刘敏 朱浸华
机构地区 宜宾学院数学系
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期180-184,共5页 Journal of Sichuan Normal University(Natural Science)
关键词 对偶 co-self-small 余-*-模 Duality Co-self-small Co- * -modules
  • 相关文献

参考文献3

二级参考文献15

  • 1汪明义,张闺明.凝聚环上模的广义Morita对偶及Tilting定理[J].四川师范大学学报(自然科学版),1994,17(4):43-49. 被引量:4
  • 2[1]Houston E, Zafrullah M. On t-invertibility II[J]. Comm Algebra,1989,17:1955~1969.
  • 3[2]Houston E, Malik S B, Mott J. Characterizations of *-multiplication domains[J]. Canad Math Bull,1984,27:48~52.
  • 4[3]Kaplansky I. Commutative Rings[M]. Chicago:University of Chicago Press,1974.
  • 5[4]Wang F G, McCasland R L. On strong Mori domains[J]. J Pure Appl Algebra,1999,135:155~165.
  • 6[5]Dobbs D, Houston E, Lucas T, et al. t-Linked overrings and Prüfer v-multiplication domains[J]. Comm Algebra,1989,17:2835~2852.
  • 7[6]Anderson D F, Houston E G, Zafrullah M. Pseudo-integrality[J]. Canad Math Bull,1991,34:15~22.
  • 8[7]Dobbs D, Houston E, Lucas T, et al. On t-linked overrings[J]. Comm Algebra,1992,20:1463~1488.
  • 9[8]Gilmer R. Multiplicative Ideal Theory[M]. New York:Marcel Dekker Inc,1972.
  • 10[9]Matsumura H. Commutative Ring Theory[M]. New York:Cambridge University Press,1989.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部