期刊文献+

对介观叠加态可逆退相干响应的研究 被引量:1

Study on Responce in the Reversible Decoherence of a Mesoscopoic Superposed State
下载PDF
导出
摘要 将描述薛定谔猫相态的可逆退相干模型进行推广:先让两个都处于薛定谔猫相态的高Q量子腔C1和C2相互耦合,再让C2与一个处于空态的量子腔C3相耦合,并发现此时C2腔中的薛定谔猫相态可逆退相干的响应速度加快,且可逆退相干的发生周期与腔之间的耦合系数有关. An experiment, a high- Q cavity C2 coupled to a "reservoir" cavity C1, is proposed to describe the reversible decoher- ence of a phase cat state. In this paper, we extend the model:the high- Q cavity C1 in the phase cat state is coupled to another high- Q cavity C2 also in the phase cat state, and C2 is coupled to a cavity C3 as a "reservoir". At this time, the responding speed of decoherence of the Sehrodinger cat state in cavity C2 becomes faster. The period of the occurrence of the reversible decoherenee is related to the couoling constant between the cavities.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期215-218,共4页 Journal of Sichuan Normal University(Natural Science)
基金 四川省应用基础研究基金 四川省教育厅自然科学重点基金资助项目
关键词 可逆退相干 薛定谔猫相态 响应速度 Reversible deeoherence Sehrodinger eat state Speed of response
  • 相关文献

参考文献6

  • 1Brune M,Hagley E,Dreyer J,et al.Phys Rev Lett,1996,77:4887.
  • 2Raimond J M,Brune M,Haroche S.Phys Rev Lett,1996,79:1964.
  • 3Louisell W H.Quantum Statistical Properties of Radiation[M].New York:John Wiley,1973.
  • 4侯邦品,李德华.广义双模光学系统的几何相位[J].四川师范大学学报(自然科学版),2004,27(2):180-181. 被引量:1
  • 5de Oliveira M C,Mizrahi S S,Dodonov V V.J Opt B:Quantum Semiclass Opt,1999,1:610.
  • 6Davidovich L,Brune M,Raimond J M,et al.Phys Rev,1996,A53:1295.

二级参考文献9

  • 1[1]Berry M V. Proc Roy Soc,1984,A392:45.
  • 2[2]Aharonov Y, Anandan J. Phase change during a cyclic quantum evolution[ J]. Phys Rev Lett, 1987,58( 16):1593.
  • 3[3]Samuel J, Bhandari R. General setting for Berry phase[J]. Phys Rev Lett,1988,60(23):2339.
  • 4[4]Pancharatnam S. Proc Indian Acad Sci,1956,A44:247.
  • 5[5]Paul K, Harald W, Thomas H, et al. Interaction-free measurement[J]. Phys Rev Lett,1995,74(24):4763.
  • 6[6]Luis A, Sanchez-Soto L L. Dynamics of a two-level atom observed via an interaction-free measurement[J]. Phys Rev, 1999,B60(1):56.
  • 7[7]Raimond J M, Brune M, Harroche S. Reversible decoherence of a mesoscopic superposition of field states[J]. Phys Rev Lett, 1996,79(11):1964.
  • 8[8]Hou B P, Wang S J, Yu W L. An exact solution and the Pancharatnam phase for the generalized two-mode optical system[J]. Chinese Phys Lett,2002,19(4):463.
  • 9[9]Louisell W H. Quantum Statistical Properties of Radiation[M]. New York:John Wiley, 1973.

同被引文献11

  • 1吕桓林,何正红,冉扬强.相位阻尼对量子传输保真度的影响[J].西南师范大学学报(自然科学版),2006,31(3):48-51. 被引量:4
  • 2Knill E,Laflamme R.Theory of quantum error-correcting codes[J].Phys Rev A,1997,55(2):900-911.
  • 3Laflamme R,Miquel C,Juan P,et al.Perfect Quantum Error Correction Code[J].Phys Rev Lett,1996,77(1):198 -201.
  • 4Bennett C H,DiVincenzo D P,Smolin J A,et al.Mixed-state entanglement and quantum error correction[J].Phys Rev A,1996,54(5):3824-3851.
  • 5Shor P W.Scheme for reducing decoherence in quantum computer memory[J].Phys Rev A,1995,52(4):R 2493-R 2496.
  • 6Calderbank A R,Shor P W.Good quantum error-correcting codes exist[J].Phys Rev A,1996,54(2):1098-1105.
  • 7DiVincenzo D P,Shor P W.Fault-Tolerant Error Correction with Efficient Quantum Codes[J].Phys Rev Lett,1996,77(15):3260-3263.
  • 8Schulman L S.Bounds on decoherence and error[J].Phys Rev A,1998,57(2):840-844.
  • 9Zurek W H,Laflamme R.Quantum Logical Operations on Encoded Qubits[J].Phys Rev Lett,1996,77(22):4683-4686.
  • 10张登玉.量子位叠加态的防错纠错编码[J].光电子.激光,1999,10(5):465-468. 被引量:11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部