摘要
岩溶水系统是受水文、地质、地形地貌、植被、人类活动等多种因素影响的非线性动力系统。本文利用重构相空间与神经网络,建立重构相空间与神经网络耦合的泉流量预测模型;通过对黑龙洞泉域泉流量的预测可知,所建立的耦合模型精度高。
The groundwater system of karst spring is a nonlinear and dynamic system influenced by factors such as hydrology, geology, landform, vegetation and human ' s activities. Based on the theory of phase space reconstruction and neural network, the forecast model for the discharge of karst spring is established from the coupling of phase space reconstruction and neural network. Through the application of the model to forecasting the discharge of Heilongdong spring system, it is shown that the precision of the forecast model is very high.
出处
《工程勘察》
CSCD
北大核心
2006年第4期30-32,共3页
Geotechnical Investigation & Surveying
关键词
岩溶泉流量
相空间重构
神经网络
预测模型
discharge of karst spring
phase space reconstruction
neural network
forecast model