期刊文献+

信息集成算子加权向量的对称性研究 被引量:2

Study on the Symmetry Properties of Weighting Vectors of Information Aggregation Operators
原文传递
导出
摘要 对信息集成算子加权向量的对称性进行了研究.提出了升序加权算术平均(AOWAA)算子和语言AOWAA算子,分别给出了降序加权算术平均(DOWAA)算子和升序加权算术平均(AOWAA)算子、降序加权几何平均(DOWGA)算子和升序加权几何平均(AOWGA)算子、以及语言DOWAA算子和语言AOWAA算子的一个等价条件,并证明了在加权向量是对称的情况下:1)利用DOWAA算子对若干个互补判断矩阵进行集成所得到的群判断矩阵仍为互补判断矩阵;2)利用DOWGA算子对若干个互反判断矩阵进行集成所得到的群判断矩阵仍为互反判断矩阵;3)利用语言DOWAA算子对若干个语言互补判断矩阵进行集成所得到的群判断矩阵仍为语言互补判断矩阵.最后探讨了一些常用加权向量的对称性问题. In this paper, we investigate the symmetry properties of weighting vectors of information aggregation operators, and present an ascending ordered weighted arithmetic averaging (AOWAA) operator and a linguistic AOWAA operator. We give, respectively, an equivalence condition of the descending ordered weighted arithmetic averaging (DOWAA) operator and ascending ordered weighted arithmetic averaging (AOWAA) operator, descending ordered weighted geometric (DOWGA) operator and ascending ordered weighted geometric (AOWGA) operator, linguistic DOWAA operator and linguistic AOWAA operator. Based on the symmetrical weighting vectors, we show that 1) If all the individual complementary judgment matrices are aggregated by using the DOWAA operator, then their aggregated judgment matrices are also complementary; 2 ) If all the individual reciprocal judgment matrices are aggregated by using the DOWGA operator, then their aggregated judgment matrices are also reciprocal; 3 ) If all the individual linguistic complementary judgment matrices are aggregated by using the linguistic DOWAA operator, then their aggregated judgment matrices are also linguistic complementary. Finally, we discuss the symmetry properties of some common weighting vectors of information aggregation operators.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2006年第3期75-82,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70571087) 中国博士后科学基金(2003034366)
关键词 信息集成算子 权重 对称性 判断矩阵 ordered weighted averaging operator weight symmetry judgment matrices
  • 相关文献

参考文献13

  • 1Yager R R,Kacprzyk J.The Ordered Weighted Averaging Operators:Theory and Applications[M].Norwell MA:Kluwer,1997.
  • 2Calvo T,Mayor G,Mesiar R.Aggregation Operators:New Trends and Applications[M].Heidelberg,Germany:Physica-Verlag,2002.
  • 3Xu Z S,Da Q L.An overview of operators for aggregating information[J].International Journal of Intelligent Systems,2003,18(9):953-969.
  • 4Torrs V.Information Fusion in Data Mining[M].New York:Physica-Verlag ;2003.
  • 5Yager R R.On ordered weighted averaging aggregation operators in multicriteria decision making[J].IEEE Transactions on Systems,Man,and Cybernetics,1988,18(1):183-190.
  • 6Xu Z S,Da Q L.The ordered weighted geometric averaging operators[J].International Journal of Intelligent Systems,2002,17 (7):709-716.
  • 7Xu Z S.An overview of methods for determining OWA weights[J].International Journal of Intelligent Systems,2005,20(8):843 -865.
  • 8Chiclana F,Herrera F,Herrera-Viedma E,Martinez L.A note on the reciprocity in the aggregation of fuzzy preference relations using OWA operators[J].Fuzzy Sets and Systems,2003,137 (1):71-83.
  • 9Herrera F,Herrera-Viedma E,Chiclana F.A study of origin and uses of the ordered weighted geometric operator in multicriteria decision making[J].International Journal of Intelligent Systems,2003,18 (6):689-707.
  • 10Zadeh L A.A computational approach to fuzzy quantifiers in natural languages[J].Computers & Mathematics with Applications,1983,9(1):149-184.

同被引文献23

  • 1林元庆,陈加良.方法群评价中权重集化问题的研究[J].中国管理科学,2002,10(z1):20-22. 被引量:32
  • 2易平涛,郭亚军,张丹宁.密度加权平均中间算子及其在多属性决策中的应用[J].控制与决策,2007,22(5):515-519. 被引量:54
  • 3Yager R R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking [ J ]. IEEE Transactions on Sys- tems, Man, and Cybernetics, 1988,18 : 183-190.
  • 4Xu Z S. An overview of methods for determining OWA weights[ J]. International Journal oflntelligent Systems, 2005,20(8) :843- 865.
  • 5Yager R R. Prioritized OWA aggregation[J]. Fuzzy Optim Decis Making,2009,8:245-262.
  • 6Xu Z S. Dependent uncertain ordered weighted aggregation operators [ J ]. Information Fusion, 2008, 9 (3) : 310-316.
  • 7Xu Z S. Dependent OWA operators[ J]. Lecture Notes in Artificial Intelligence,2006,3885:172-178.
  • 8陈珽.决策分析[M].北京:科学出版社,1987..
  • 9Detyniecki M. Mathematical aggregation operators and their application to video querying[D]. Doctoral Thesis -Research Report 2001-002, 2001.
  • 10Hwang C L, Lin M J. Group decision making under multiple criteria, methods and applications [M]. Berlin: Springer-Verlay, 1987.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部