期刊文献+

Stable Stationary Harmonic Maps to Spheres

Stable Stationary Harmonic Maps to Spheres
原文传递
导出
摘要 For k ≥ 3, we establish new estimate on Hausdorff dimensions of the singular set of stable-stationary harmonic maps to the sphere S^k. We show that the singular set of stable-stationary harmonic maps from B5 to 83 is the union of finitely many isolated singular points and finitely many HSlder continuous curves. We also discuss the minimization problem among continuous maps from B^n to S^2. For k ≥ 3, we establish new estimate on Hausdorff dimensions of the singular set of stable-stationary harmonic maps to the sphere S^k. We show that the singular set of stable-stationary harmonic maps from B5 to 83 is the union of finitely many isolated singular points and finitely many HSlder continuous curves. We also discuss the minimization problem among continuous maps from B^n to S^2.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第2期319-330,共12页 数学学报(英文版)
基金 partially supported by NSF
关键词 stable stationary harmonic map Hausdorff dimension rectifiablity stable stationary harmonic map, Hausdorff dimension, rectifiablity
  • 相关文献

参考文献17

  • 1Schoen, R,, Uhlenbeck, K,: A regularity theory for harmonic maps. J, Differential Geom,, 17(2)., 307-335(1982).
  • 2Schoen, R., Uhlenbeck, K.: Regularity of minimizing harmonic maps into the sphere. Invent. Math., 78(1),89-100 (1984).
  • 3Hong, M. C., Wang, C. Y.: On the singular set of stable-stationary harmonic maps. Calc. Var. Partial Differential Equations, 9(2), 141-156 (1999).
  • 4Price, P.: A monotonicity formula for Yang:Mills fields. Manuscripta Math., 43(2-3), 131-166 (1983).
  • 5Schoen, R.: Analytic aspects of the harmonic map problem, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), 321 358, Math. Sci. Res. Inst. Publ., 2, Springer, New York, 1984.
  • 6Yau, S. T.: Some function-theoretic properties of complete Riemannian manifold and their applications togeometry, Indiana Univ. Math. J,, 25(7), 659-670 (1976).
  • 7Nakajima, T.: Singular points for harmonic maps from 4-dimensional domains into 3-spheres. Duke Math.Journal., t appear.
  • 8Hardt, R., Lin, F. H.: Stability of singularities of minimizing harmonic maps. J. Differential Geom., 29(1),113-123 (1989).
  • 9Almgren, F., Lieb, E.: Singularities of energy minimizing maps from the ball to the sphere: examples,counterexamples, and bounds, Ann. of Math. (2), 128(3), 483-530 (1988).
  • 10Hardt, R., Lin, F. H.: The singular set of an energy minimizing map from B^4 to S^2. Manuscripta Math.,69(3), 275-289 (1990).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部