期刊文献+

Tail Bounds for the Supremums of Empirical Processes over Unbounded Classes of Functions 被引量:1

Tail Bounds for the Supremums of Empirical Processes over Unbounded Classes of Functions
原文传递
导出
摘要 So far the study of exponential bounds of an empirical process has been restricted to a bounded index class of functions. The case of an unbounded index class of functions is now studied on the basis of a new symmetrization idea and a new method of truncating the original probability space; the exponential bounds of the tail probabilities for the supremum of the empirical process over an unbounded class of functions are obtained. The exponential bounds can be used to establish laws of the logarithm for the empirical processes over unbounded classes of functions. So far the study of exponential bounds of an empirical process has been restricted to a bounded index class of functions. The case of an unbounded index class of functions is now studied on the basis of a new symmetrization idea and a new method of truncating the original probability space; the exponential bounds of the tail probabilities for the supremum of the empirical process over an unbounded class of functions are obtained. The exponential bounds can be used to establish laws of the logarithm for the empirical processes over unbounded classes of functions.
作者 Di Xin ZHANG
机构地区 Department of Finance
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第2期339-346,共8页 数学学报(英文版)
基金 supported partially by the National Natural Science Foundation of China (Grant No. 10471061) the Social Science Foundation of Ministry of Education of China (Grant No. 01JD910001)
关键词 empirical process tail bound unbounded class of functions empirical process, tail bound, unbounded class of functions
  • 相关文献

参考文献23

  • 1Shorack, G. R., Wellner, J. A.: Empirical Processes with Applications to Statistics, Wiley, New York, 1986.
  • 2Gine, E., Zinn, J.: Bootstrapping empirical processes. Ann.Probab., 18, 851-869 (1990).
  • 3Vaart, A. W., Wellner, J. A.: Weak Convergence and Empirical Processes, Springer:Verlag, New York, 1996.
  • 4Zhang, D. X., Li G.: Bootstrap approximation for generalized U-processes. Chinese Science Bulletin, 39,1761-1765 (1994).
  • 5Zhang, D. X., Cheng, P.: Random weighting approximation of empirical processes and their applications.Chinese Science Bulletin, 41, 353-357 (1996).
  • 6Zhang, D. X.: Bayesian bootstraps for U-processes, hypothesis tests and convergence of Dirichlet U-processes. Statistica Sinica, 11, 463-478 (2001).
  • 7Yuen, K. C., Zhu, L., Zhang, D. X.: Comparing k cumulative incidence functions through resampling methods. Lifetime Data Analysis, 8, 401-412 (2002).
  • 8Pollard, D.: Convergence of Stochastic Processes, Springer-Verlag, New York, 1984.
  • 9Hoeffding, W.: Probability inequalities for sums of bounded random variables. JASA, 58, 13-30 (1963).
  • 10Dudley, R. M.: Central limit theorems for empirical measures. Ann. Probab., 6, 899-929 (1978).

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部