期刊文献+

Einstein-Kahler Metric with Explicit Formula on Super-Cartan Domain of the Fourth Type 被引量:6

Einstein-Kahler Metric with Explicit Formula on Super-Cartan Domain of the Fourth Type
原文传递
导出
摘要 Let YIV be the Super-Cartan domain of the fourth type, We reduce the Monge-Ampere equation for the metric to an ordinary differential equation in the auxiliary function X = X(Z, W). This differential equation can be solved to give an implicit function in X. We give the generating function of the Einstein Kahler metric on YIV. We obtain the explicit form of the complete Einstein-Kahler metric on YIV for a special case. Let YIV be the Super-Cartan domain of the fourth type, We reduce the Monge-Ampere equation for the metric to an ordinary differential equation in the auxiliary function X = X(Z, W). This differential equation can be solved to give an implicit function in X. We give the generating function of the Einstein Kahler metric on YIV. We obtain the explicit form of the complete Einstein-Kahler metric on YIV for a special case.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第2期367-376,共10页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant No.10471097) Scientific Research Common Program of Beijing Municipal Commission of Education(Grant NO.KM200410028002) Supported by National Natural Science Foundation of China(Grant No
关键词 Super-Cartan domain Einstein-Kahler metric Holomorphic sectional curvature Generating function Super-Cartan domain, Einstein-Kahler metric, Holomorphic sectional curvature, Generating function
  • 相关文献

参考文献1

二级参考文献7

  • 1陆启铿,典型流形与典型域新篇,1997年
  • 2Yin Weiping,中国科学技术大学学报,1986年,16卷,2期,130页
  • 3Trans Amer Math Soc,1982年,270卷,2期,685页
  • 4陆启铿,典型流形与典型城,1963年
  • 5陆启铿,多复变数函数引论,1961年
  • 6华罗庚,多复交函数论中的典型域上的调和分析,1958年
  • 7Boas H P,Proceedings of the AMS.

共引文献28

同被引文献26

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部