期刊文献+

Co_(41)Ni_(33)Al_(26)合金冷轧带材相变与阻尼能力 被引量:2

Martensitic Transformation and Damping Capacity of Co_(41)Ni_(33)Al_(26) Alloy Ribbons Fabricated by Cold Rolling Method
下载PDF
导出
摘要 通过热轧和冷轧工艺制备了0.2mm厚的Co41Ni33Al26合金带材,采用1350℃×5h水冷对该带材进行了淬火热处理,用金相显微镜观察了其组织。用微分差热分析仪(DSC)测定了其马氏体转变温度,并用动态热机械谱仪(DMS)研究了其相变及阻尼能力。结果表明,0.2mm的Co41Ni33Al26合金带材的基体为竹节状的粗大再结晶晶粒,其马氏体相变温度比1.5mm厚的板材高约45℃;降温过程中合金带材在140~25℃温度范围出现阻尼峰,其阻尼峰宽明显大于马氏体相变温度范围,后者为121-78℃,表明有新的应力诱发马氏体相变出现;Co41Ni33Al27合金带材的阻尼能力超过O.04,并且温度范围宽,有望成为新型阻尼材料。 Abstract: Co41Ni33Al26 alloy ribbons with a thickness about 0.2mm were fabricated by hot rolling and cold rolling processes. After heattreated at 1350℃ for 5 hours and then water quenched, the structure of the ribbons matrix phase converted to bamboo- liked reerystallized large grains. Martensitic transformation and damping capacity of Co41Ni33Al26 alloy ribbons were investigated by means of differential scanning calorimetry (DSC) and dynamic mechanical spectroscopy (DMS) separately. It was found that the martensitic transformation temperature of 0.2mm thickness ribbons is about 45℃ higher than that of 1.5mm thickness plate. During cooling process, there is a damping peak appearing at the temperature from 140℃ to 25℃ which is obviously wider than its martensitic transformation temperature (121- 78℃ ) measured by means of DSC. It is suggestsed that some stress-induced martensitic transformations took place. The damping capacity of Co41Ni33Al26 alloy ribbon is over 0.04 corresponding to a wide temperature range, indicating that the alloy is a new kind of promising damping material.
出处 《材料开发与应用》 CAS 2006年第2期9-13,23,共6页 Development and Application of Materials
基金 教育部新世纪优秀人才支持计划(NCET-04-0752)
关键词 Co-Ni-Al合金 马氏体相变 阻尼能力 CoNiAl alloy Martensitic transformation Damping capacity
  • 相关文献

参考文献26

  • 1Kainuma R, Ise M, Jia C C, et al. Phase euqilibria and microstructural eontrol in Ni-Co-Al system [J].Intermetallics, 1996, 4: s151-s158.
  • 2Enami K, Nenno S. Memory effect in Ni-36.8 at pct Al martensite[J]. Metall Trans, 1971, 2: 1487-1490.
  • 3Litvinov V S, Arkhangel' skaya A A. Martensitic transformation in β alloys of Ni-Co-Al[J]. Phys Met Metal, 1978, 44(4): 131-137.
  • 4Karaea H E, Karaman I, Lagoudas D C, et al. Reooverable stress-induced martensitic transformation in a ferromagnetic CoNiAl alloy[J ]. Scripta Materialia,2003, 49: 831-836.
  • 5Oikawa K, Wulff L, Iijima T, et al. Promising ferromagnetic Ni-Co-Al shape memory alloy system[J].Appl Phys Lett, 2001, 79: 3290-3292.
  • 6Oikawa K, Ota T, Gejima F, et al. Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co-Ni-Ga and Co-Ni-Al systems[J]. Mater Trans JIM, 2001, 42: 2472-2475.
  • 7Tanaka Y, Ohmori T, Oikawa K, et al. Ferromagnetic Co-Ni-Al shape memory alloys with two-phase structure[J]. Materials Transactions JIM, 2004, 45(2) : 427-430.
  • 8罗丰华,陈康华,及川胜成,石田清仁.Co41Ni33Al26合金的再结晶、马氏体相变和铁磁特性[J].金属热处理,2005,30(9):1-5. 被引量:8
  • 9Hachl K, Schmidt - Baldassari M, Zhang W, et al.Surface energies and size effects in shape memory alloys [J]. Marterials Science and Engineering A,2004, 378: 499-502.
  • 10Sakamoto H, Sugimoto S,Hara T. Thermoelastic equilibrium and specimen size effects in thermoelastic martensitic transformations [ J ]. Materials Transactions JIM, 1998, 39(6): 640-647.

二级参考文献45

  • 1T.H. Zhang, Z.Z. Yi, X. Y. Wu, S.J. Zhang, Y. G. Wu, X. Zhang, H.X. Zhang, A.D. Liu and X.J. Zhang Key Laboratory for Radiation Beam Technology and Material Modification, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing Radiatio.Mo SILTCIDE SYNTHISIS BY DUAL ION BEAM DEPOSITION[J].Acta Metallurgica Sinica(English Letters),2002,15(2):187-190. 被引量:76
  • 2Enami K and Nenno S. Memory effect in Ni-36. 8 at. pct Al martensite [ J ]. Metallurgical Transactions, 1971,2 : 1487-1490.
  • 3Kainuma R, lse M, Jia C C, Ohtani H and lshida K. Phase euqilibria and microstrural control in Ni-Co-Al system [ J ].Intermetallics, 1996,4 : 151-158.
  • 4Litvinov V S and Arkhangel'skaya A A. Martensitic transformation in β alloys of Ni-Co-Al[ J]. Phys. Met. Metal, 1978,44(4) :131-137.
  • 5Karaca H E, Karaman I, Lagoudas D C, Maier H J, Chumlyakov Y I. Recoverable stress-induced martensitic transformation in a ferromagnetic CoNiAl alloy [ J ]. Scripta Materialia,2003,49:831-836.
  • 6Ullakko K, Huang J K, Kantner C, et al. Large magnetic-field-induced strains in Ni2MnGa single crystals [ J ]. Appl.Phys. Lett. , 1996,69( 13 ) : 1966-1968.
  • 7Murray S J,Marioni M,Allen S M and O'Handley R C. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga[ J]. Applied Physics Letters,2000,77 (6) : 886-889.
  • 8Murray S J, Marioni M A, Kukla A M, et al. Large field induced strain in single crystalline Ni-Mn-Ga ferromagnetic shape memory alloy[ J]. Journal of Applied Physics ,2000,87(9) :5774-5776.
  • 9James R D and Wuttig M. Magnetostriction of martensite[ J ]. Philosophical Magazine A, 1998,77 (5) : 1273-1299.
  • 10Furuya Y,Hagood N W, Kimura H and Watanabe T. Shape memory effect and magnetostriction in rapidly solidified Fe-29. 6at% Pd alloy [ J ]. Materials Transactions, JIM, 1998,39( 12 ) : 1248-1254.

共引文献25

同被引文献29

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部