摘要
针对与鞍结分岔相关的电压稳定裕度对参数的灵敏度计算问题,该文提出了一种解线性方程组求灵敏度的新方法。与以往方法不同的是:该方法无需求解鞍结分岔点处潮流雅可比矩阵零特征值对应的左特征向量,而只需求解一个左端系数阵为扩展潮流雅可比矩阵的线性方程组。由于避免了左特征向量的迭代求解,因此该方法简单实用,计算量小,适于在线静态电压稳定分析的使用。另外文中还对另一种普遍存在的分岔形式——限值诱导分岔的特点与灵敏度计算作了探讨。在EPRI1000母线系统算例下的计算表明,本文方法切实可行并具有较高的精度。
A new method is derived to compute the sensitivity of loading margin to voltage collapse with respect to any parameters. Differing from the traditional one, this method does not need to compute the left eigenvector associated with the zero eigenvalue of power flow Jacobian matrix, evaluated at saddle-node bifurcation point. What's needed is just to solve a system of linear equations with extended power flow Jacobian matrix on the left-hand side. Avioding the iteration step to compute left eigenvector, this method is more simple and more suitable for on-line steady state voltage stability analysis. In addition, another type of generic bifurcation - limit-induced bifurcation is concerned and the sensitivity of loading margin to LIB is also presented in this paper. Tests with a 1000 bus system verify the accuracy of this method.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2006年第2期13-18,共6页
Proceedings of the CSEE
基金
国家自然科学基金项目(50595412)
美国电力科学研究院合作科研基金项目(EP-P11543/C5729)~~
关键词
电力系统
电压稳定
灵敏度
负荷裕度
左特征向量
鞍结分岔
限值诱导分岔
Power system
Voltage stability
Sensitivity
Loading margin
Left eigenvector
Saddle-node bifurcation
Limit induced bifurcation