期刊文献+

基于粗糙集数据挖掘和分类集成学习的网络入侵检测模型 被引量:4

MODELING NETWORK INTRUSION DETECTION USING ROUGH SET DATA MINING AND ENSEMBLE LEARNING
下载PDF
导出
摘要 基于多个特征或多个模型的集成(Ensemb le)学习技术是智能网络入侵检测的重要研究方向,在现有研究基础上提出基于粗糙集分类、模型分发和攻击归类检测,并加以集成的学习式网络入侵检测模型,该模型不仅能提高网络入侵检测系统检测率,同时还结合了粗糙集能处理不确定信息、生成规则具有高解释性、特征排序在获得检测规则前完成等优点。 Ensemble Learning technology is one of the important research directions in intelligent network intrusion detections. Based on the others' research in this domain,a new Network Intrusion Detection Modeling technology using Rough Set Data Mining, model distribution and Ensemble Learning is proposed ,which can improve the detection rate and has the advantages of Rough Set Data Mining such as high model explanation,feature ranking and imprecise information adaption etc.
出处 《计算机应用与软件》 CSCD 北大核心 2006年第4期120-122,共3页 Computer Applications and Software
关键词 网络入侵检测 粗糙集 数据挖掘 集成学习 Network intrusion detection Rough set Data mining Ensemble learning
  • 相关文献

参考文献1

共引文献15

同被引文献9

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部