期刊文献+

基于微粒群优化的模型参考自适应控制 被引量:1

Model reference adaptive control based on particle swarm optimization algorithm
下载PDF
导出
摘要 针对复杂非线性对象提出了一种基于微粒群优化(PSO)的PID自适应控制方法。通过运用PSO算法对PID控制器参数进行在线调整,使模型参考自适应控制达到理想的控制效果。将该方法引入到连续搅拌反应釜这一复杂的非线性系统,仿真结果表明了该方法的良好性能。 Aiming at the complex nonlinear system, a PID self-adaptive control method based on the PSO algorithm is stated in the paper. Using the PSO algorithm to optimize the on-line PID controller's parameters, desirable control effect is obtained. An application of this method to the control of the continuous Stirred Tank Reactor(CSTR) system which is a complex nonlinear system is studied. Simulation results show the validity of the method.
出处 《高技术通讯》 CAS CSCD 北大核心 2006年第3期262-266,共5页 Chinese High Technology Letters
基金 国家自然科学基金(60421002,70471952)资助项目.
关键词 微粒群优化 自适应控制 连续搅拌釜 particle swarm optimization (PSO), adaptive control, CSTR
  • 相关文献

参考文献11

  • 1Kennedy J,Eberhart R C.Particle Swarm Optimization.In:Proceedings of IEEE International Conference on Neural Networks,Perth,1995.1942-1948
  • 2Shi Y H,Eberhart R C.A modified particle swarm optimizer.In:Proceedings of IEEE Conference on Evolutionary Computation,Anchorage,1998.303-308
  • 3Eberhart R C,Shi Y H.Particle swarm optimization:Developments,applications and resources.In:Proceedings of IEEE International Conference On Evolutionary Computation,Seoul,2001.81-86
  • 4Parsopoulos K E,Vrahatis M N.Recent approaches to global optimization problems through Particle Swarm Optimization.Natural Computing,2002,3(1):235-306
  • 5Millonas M M.Swarms,Phase Transition,and Collective Intelligence.MA:Addison Wesley,1994
  • 6陈申,蒋静坪,袁惠根.CSTR的非线性自适应控制[J].信息与控制,1992,21(2):124-128. 被引量:6
  • 7许力,蒋静坪.CSTR系统的基于CMFC神经元网络的学习控制研究[J].控制与决策,1992,7(2):131-136. 被引量:11
  • 8Deng X S,Popovic D,Schulz_ Ekloff G.Real-time identification and control of a continuous stirred tank reactor with neural network.In:Proceedings of IEEE International Conference On Industrial Automation and Control,Hyderabad,1995.67-70
  • 9于乃功,汪吉鹏.CMAC神经元网络在CSTR系统建模中的应用[J].信息与控制,1999,28(3):208-213. 被引量:4
  • 10David L.Handbook of Genetic algorithms.New York:Van Nostrand Reinhold,1991

二级参考文献8

共引文献18

同被引文献7

  • 1G Vossoughi. Nonlinear Analysis and Control of Electrohydraulic Servo System [ C ]. Proceedings of the 2nd Biennial European Joint Conference on Engineering Systems Design and Analysis, New York: 1994:59-67.
  • 2S Bennett. Brief History of Servomechanisms [ J]. IEEE Control System Magazine, 1994, 14: 75-79.
  • 3S Tomonobu, K Tomohiro, U Katsumi. Position Control of Ultrasonic Motors Using MRAC and Dead-zone Compensation with Fuzzy Inference [ J ]. IEEE Transaction on Power Electronics, 2002, 17:265-272.
  • 4D E Miller. A New Approach to Model Reference Adaptive control [ C ]. Proceeding of the American Control Conference, Anchorage, American, 2002:2929-2934.
  • 5J S Phuah, J M Lu, T Yahagi. Model Reference Adaptive Control for Multi-input Multi-Output Nonlinear Systems Using Neural Networks [ C]. Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003 : 12 - 16.
  • 6Gao Q, Qian L F, Wang Y S, Hou Y L, Wang L Model Identification of an Electro-Hydraulic Position Servo System Based on the Evolutionary Neural Network [ C ]. Proceedings of ICMEM 2007 International Conference on Mechanical Engineering and Mechanics, Wuxi, China, 2007. 1 : 704 - 708.
  • 7张秀玲.神经网络非线性系统模型参考自适应控制器统一设计法[J].控制与决策,2002,17(2):151-154. 被引量:10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部