期刊文献+

基于粒子群算法的深基坑岩土力学参数反分析 被引量:4

Back-analysis for Soil Parameter of Deep Foundation Based on Particle Swarm Optimization
下载PDF
导出
摘要 运用人工神经网络对深基坑岩土参数进行反分析时,将粒子群算法与BP算法融合,充分发挥了粒子群算法全局寻优的能力和BP算法局部细致搜索优势.实例证明,应用该方法可提高模糊优选人工神经网络的训练效率,预估的岩土力学参数合理. A model is established, integrating particle swarm optimization and fuzzy artificial neural network to back-analysis for soil parameter of deep foundation. The method makes full use of the global optimization of particle swarm optimization and local accurate searching of BP. The ease of back-analysis shows that this method is more efficient and has good generalization. The prediction result of soil parameter is reasonable.
出处 《华北水利水电学院学报》 2006年第1期94-96,共3页 North China Institute of Water Conservancy and Hydroelectric Power
关键词 深基坑 模糊神经网络 反分析 deep foundation fuzzy neural network back-analysis
  • 相关文献

参考文献2

  • 1J Kennedy,R Eberhart.Particle Swarm Optimization [A].Proc.IEEE Int.Conf.on Neural Networks[C].1995.1942 - 1948.
  • 2Yuhui Shi,R Eberhart.Parameter Selection in Particle Swarm Optimization[A].Proc.of the 7th Annual Conf.on Evolutionary Programming[C].1998.591 - 600.

同被引文献47

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部