期刊文献+

考虑泥沙冲淤对水流控制方程的改进与模拟 被引量:2

Modification of water continuity equation considering the exchange flux between sediment laden flow and bed
下载PDF
导出
摘要 以一维数学模型为例,通过数值实验及渭河实际资料的验证,发现在含沙量较大的情况下,水流连续方程里的浑水与床面的交换项对流量影响是明显的,计算中应予考虑。解释了在像黄河这样的多沙河流中存在的“水变沙”、“沙变水”的现象。由此可见,在模拟含沙量较大河流的水沙数学模型中,应完整考虑水流连续方程的微元河段的水量变化率、进出通量变化及浑水与床面的交换通量这三项。 In the sediment mathematical model, three compossitions of the flow should be included in the the volume flow rate of a control volume, the volume flow rate in and out the control volume and the ex continuity equation : change flux between sediment laden flow and bed. Now, the exchange term between sediment laden flow and bed is not be considered in the flow continuity equation in most sediments mathematical models. One dimension-mathematlcal model is taken as an example to evaluate the importance of the exchange term with the numerical experiments. Based on the schematic model and the field data of the Weihe River, the research results show that the exchange term has obvious influence on discharge when sediment concentration is high. The phenomenon of the so-called‘change flow into bed material' or‘change bed material into flow', which often occurs in the sediment-laden river like the Yellow River, can be explained. The conclusion can be made when the sediment concentration is high. The three compositions of the equation of continuity of flow should be synthetically considered in the water and sediment mathematics model.
出处 《水科学进展》 EI CAS CSCD 北大核心 2006年第2期235-241,共7页 Advances in Water Science
基金 国家重大基础研究计划(973)资助项目(2003CB415203)~~
关键词 水流控制方程 高含沙 浑水连续方程 数值试验 数学模型 water continuity equation hyperconcentrated sediment-laden flow equation of continuity of sediment laden flow numerical experiment mathematical model
  • 相关文献

参考文献15

  • 1Holly F M, Jr, Karim M F. Simulation of Missouri River bed degradation[J]. J Hydraul Eng, 1986, 112(6):497-517.
  • 2Needham D J, Hey R D. On nonlinear simple waves in alluvial river flows: a theory for sediment bores[C]. London: Philos Trans R Soc,1991, Set A, 334:25 -53.
  • 3Needham D J. Wave hierarchies in alluvial river flows[C] Geophys Astrophys Fluid Dyn, 1990, 51:167- 194.
  • 4Zanre D D, Needham D J. On simple waves and weak shock theory for the equations of alluvial river hydraulies[C]. London: Philos Trans R Soc, 1996, Ser A, 354:2993 -3054.
  • 5Cui Y, Parker G, Paola C. Numerical simulation of aggradation and downstream fining[J]. J Hydraul Res, 1996, 34(2) :195 - 204.
  • 6Sieben J. A theoretical analysis of discontinuous flow with mobile bed[J]. J Hydraul Res, 1999, 37(2) :199 - 212.
  • 7Zeng W, Beck M B. STAND-a dynamic model for sediment transport and water quality[J]. J Hydrology, 2003, 277(1 - 2), 125 - 133.
  • 8张红武,赵连军,王光谦,江恩惠.黄河下游河道准二维泥沙数学模型研究[J].水利学报,2003,34(4):1-7. 被引量:31
  • 9Cao Z, Day R, Egashira S. Coupled and deeoupled numerical modeling of flow and morphological evolution in alluvial rivers[J]. J Hydraul Eng, 2002, 128(3) :306 - 321.
  • 10Cao Z, Pender G, Wallis S, et al. Computational Dam-Break Hydraulics over Erodible Sediment Bed[J]. J Hydraul Eng, 2004, 130(7):689 - 703.

二级参考文献10

共引文献75

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部