摘要
针对气动比例系统中存在死区的情况,采用神经网络自学习的方法,解决由于死区的存在引起的系统定位精度问题。选定一死区补偿初值,以定位精度为目标,根据系统动态响应过程中的误差及误差变化,通过在线修正神经网络权值来调整死区补偿值。
According to the dead zone existing in the pneumatic proportional system, a neural network self- study method is introduced to solve the problem of the system location precision caused by the dead - zone existence. The dead- zone compensation value is adjusted through sel^ting an initial dead - zone compensation value, making location precision as the objective, the errors and error varieties in the process of the system dynamic response and modifying the neural network authority value online.
出处
《山东交通学院学报》
CAS
2006年第1期31-34,共4页
Journal of Shandong Jiaotong University
关键词
气动比例系统
比例阀
死区补偿
自学习算法
pneumatic proportional system
proportional valve
dead- zone compensation
self- learning method