期刊文献+

关联规则挖掘研究综述 被引量:15

Survey of Research on Association Rule Mining
下载PDF
导出
摘要 介绍了关联规则挖掘的一般概念,并对一些典型算法进行了介绍,展望了关联规则挖掘的未来研究方向. In this paper we explain the fundaments of association rule mining, at the same time, introduce some typical algorithms. In the end , we view some future directions in association rule generation.
出处 《成都大学学报(自然科学版)》 2006年第1期54-58,共5页 Journal of Chengdu University(Natural Science Edition)
关键词 关联规则 数据挖掘 频繁项集 association rules data mining large itemsets
  • 相关文献

参考文献17

  • 1Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]∥Proceedings of the ACM SIGMOD conference on management of data.New York:ACM,1993:207-216.
  • 2Agrawal R,SriKant R.Fast algorithms for mining association for mining association rules[C]∥Proceeding of the 20th international Conference on very large database.[s.1]:Morgan kaufman Pub Inc,1994:487-499.
  • 3Park J S,Chen M S,Yu P S.Efficient parallel data mining of association rules[C]∥ 4th International Conference on Information and Knowledge Management.New York:ACM,1995:31-36.
  • 4Park J S,Chen M S,Yu P S.An effective hash-based algorithm for mining association rules[C]∥Proceedings of ACM SIGMOD International Conference on Management of Data.New York:ACM,1995:175-186.
  • 5Savasere A,Omiecinski E,Navathe S.An efficient algorithm for mining association rules in large databases[C]∥Proceedings of the 21st International Conference on Very large Database.New York:ACM,1995:432-443.
  • 6Toivonen H.Sampling large databases for association rules[C]∥Proceedings of the 22nd International Conference on Very Large Database.Bombay,India:[s.n.],1996:134-145.
  • 7Brin S,Motwani R,Ullman J D,et al.Dynamic Itemset Counting and Implication Rules for Market Basket Data[C]∥In Proceedings of the ACM SIGMOD International Conference on Management of Dat.New York:ACM,1997:255-264.
  • 8惠晓滨,张凤鸣,虞健飞,牛世民.一种基于栈变换的高效关联规则挖掘算法[J].计算机研究与发展,2003,40(2):330-335. 被引量:15
  • 9Han J,Pei J,Yin Y et al.Mining Frequent Patterns without Candidate Generation[C].New York:[s.n.],2000:1-12.
  • 10Han J,Pei J,Yin Y et al.Mining Frequent Patterns without Candidate Generation:A Frequent pattern Tree Approach[J].Data Mining and Knowledge Discovery,2004(8):53-87.

二级参考文献16

  • 1中国统计局.中国统计年鉴[M].北京:中国统计出版社,1987..
  • 2中国统计局,中国统计年鉴,1987年
  • 3R Agrawal, Srikant. Fast algorithms for mining association rules. In: Proc of Int'l Conf Very Large Database. Santiago, Chile: Morgan Kaufmann, 1994. 487~499
  • 4R Agrawal, H Mannila. Fast discovery of association rules. In: M F Usana ed. Advances in Knowledge Discovery and Data Mining. Manlo Park, CA: AAAI/MIT Press, 1996. 307~328
  • 5J S Park, M S Chen, P S Yu. An effective Hash-based algorithm for mining association rules. The ACM SIGMOD Int'l Conf on Management of Data, San Jose, CA, 1995
  • 6H Toivonen. Sampling large databases for association rules. VLDB 96, Mumbia, India, 1996
  • 7R Agrawal et al. Parallel mining of association rules. IEEE Trans on Knowledge and Data Engineering, 1996, 8(6): 962~969
  • 8D W Cheung et al. Efficient mining of association rules in distributed databases. IEEE Trans on Knowledge and Data Engineering, 1996, 8(6): 910~921
  • 9B Anderson, A Moore. Adtrees for fast counting and for fast learning of association rules. KDD-98, New York, 1998
  • 10A Amir, R Feldman, R Kashi. A new and versatile method for association generation. Information Systems, 1997, 22(6/7): 333~347

共引文献62

同被引文献62

引证文献15

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部