期刊文献+

关于Boltzmann方程的空间均匀的ES模型(英文)

On the Spatially Homogeneous ES Model of the Boltzmann Equation
下载PDF
导出
摘要 在Prandtl数Pr∈[2/3,∞)的情况下,我们讨论了Boltzmann方程的空间均匀的椭圆统计模型.首先,我们建立了解的存在唯一性.其次,我们证明了该解收敛到平衡态并给出了其Maxwell分布型的下界估计.最后,我们给出了熵等式从而证明了该方程的熵是衰减的. We discuss the solution properties of the spatially homogeneous ellipsoidal statistical model (ES model) of the Boltzmann equation with Prandtl number Pr E [2/3,∞). First,we establish the existence and uniqueness result. Second, the trend towards equilibrium and the Maxwellian lower bound estimates of the solution are established. Finally, we prove the entropy identity and obtain dissipation of the entropy of this equation.
出处 《应用数学》 CSCD 北大核心 2006年第2期426-432,共7页 Mathematica Applicata
基金 SupportedbytheNationalNaturalSciencesFoundationofChina(10571066)
关键词 BOLTZMANN方程 椭圆统计模型 长时间渐近行为 Maxwell分布型下界 Boltzmann equation ES model Long time behavior Maxwellian lower bound
  • 相关文献

参考文献5

  • 1Andries P,Tallee P Le,Perlat J P,Perthame B. The Gaussian-BGK model of Boltzmann equation withsmall Prandtl number[J]. Eur. J. Mech. B-Fluids,2000,19 :813-830.
  • 2Cercignani C. Mathematical Methods in Kinetic Theory[M]. New York: Plenum Press, 1990.
  • 3Desvillettes L. Boltzmann's kernel and the spatially homogeneous Boltzmann equation[J]. Rivita di Mathematica dell universita di Parma, 2001,6: 1-22.
  • 4Holway L H. Kinetic theory of shock structure using an ellipsoidal distribution function[C]. In Rarefied Gas Dynamics, New York.. Academic Press, 1966 (1): 193-215.
  • 5Mischler S,Wennberg B. On the spatially homogeneous Boltzmann equation[J]. Ann. Inst. Henri Poincare, 1999,16:467-501.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部