期刊文献+

准晶体中八方晶系点群的对称性与矩阵表示 被引量:1

Symmetry and matrix representation of octagonal point groups in quasicrystal
下载PDF
导出
摘要 从理论上对准晶体中八方晶系各点群进行了研究.运用八方晶系各点群的极赤投影图,列出了各点群的所有对称操作;填出了固有点群822的群乘表.运用坐标变换和群论在自定义的八方坐标系中,推导出八方晶系点群所有对称操作的矩阵.这32个3×3矩阵的结构是相当简洁的,它们的矩阵元只有5种可能取值:0,±1,±2.其中2是反映八方晶系准晶体所具有的准周期性的特殊无理数. The point groups of octagonal system in quasicrystal are studied. By using stereographic projection of each point group, all symmetry operation and generating operation of the point groups are listed, and group multiplication table of maximal proper point group 822 is filled in. In octagonal coordinate system defined by us, the matrixes of the point groups symmetry operation are derived. There are thirty-two 3 × 3 matrixes. The marixes form are compact, their matrix element possible values are :0, ± 1, ±√2. Therein,√2 is an especial irrational number,which indicated the quasi-periodicity of octagonal system quasicrystal.
出处 《大学物理》 北大核心 2006年第3期17-20,37,共5页 College Physics
基金 国家自然科学基金资助项目(48970082 49272091)
关键词 准晶体 八方晶系 点群 极赤投影图 群乘表 矩阵 quasicrystal octagonal system point group stereographic projection group multiplication matrix
  • 相关文献

参考文献4

  • 1Shechtman D,Blech I,Gratias D,et al.Metallic phase with long-range orientational order and no translational symmetry[J].Phys Rev Lett,1984,53:1951~1953.
  • 2Wang N,Chen H,Kuo K H.Two-Dimensional Quasicrystal with Eightfold Rotational Symmetry[J].Phys Rev Lett,1987,59:1010~1013.
  • 3Radulescu O,Warrington D H.Arithmetic Properties of Module Directions in Quasicrystals,Coincidence Modules and Coincidence Quasilattices[J].Acta Cryst,1995,A51:335~343.
  • 4Hahn T.International Tables for Crystallography,Volume A,Space-Group symmetry[M].fifth edition.Oxford:Alden Press,2002.798~813.

同被引文献7

  • 1徐光宪,黎乐民.量子化学:上册[M].北京:科学出版社,2001:359-362.
  • 2Novoselov K S, Geim A K, Morozov S V,et al. Electric: Field Effect in Atomically [ J ]. Thin Carbon Films, Sci- ence ,2004,306,5696:666-669.
  • 3Kogan E, Nazarov V U. Symmetry classificatioin of energy bands in graphene [ J ]. phys Rev B, 2012, 85: 115418 (1-5).
  • 4Sahin H, Topsakal M, Ciraci S. Structure of fluorinated graphene and their signature [ J ] Phys Rev B, 2011 , 83 : 115432(1-6).
  • 5Kresse G, Hafner J. Ab-initio molecular-dynamics simu- lation of the liquid - metal - amorphous - semiconductor transition in germanium [J]. Phys Rev B, 1994, 49:14251-14269.
  • 6Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[ J]. Phys Rev B, 1990,41:7892.
  • 7Bhattacharya, A Bhattacharya S, Majumder C, et al. Third conformer of graphane: A first-principles density functional theory study [ J]. Phys Rev B. 2011, 83: 033404(1-4).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部