期刊文献+

一种基于主机实时流量的安全评估方法 被引量:3

Security Evaluation Method Based on Real Time Traffic of Hosts
下载PDF
导出
摘要 在分析影响服务可用性网络攻击导致网络流量异常改变的基础上,提出了一种主机网络实时流量的安全状况评估方法.首先,在固定时间窗口内选择一组能够体现网络流量统计特征的统计量作为评估测度,在大样本的基础上运用信息增益方法确定不同测度对评估结果影响的重要性.其次,采用层次加权方法,并将评估结果作为归一化异常度值,对主机网络的实时流量进行评估.实验结果表明,这种方法能够对蠕虫、DDoS、DoS攻击引发的异常流量进行合理评估,并且对引起网络流量异常改变的新攻击有良好的评估效果. After analyzing malicious attacks against network that affect the service availability and would lead to the abnormal change of the network traffic, a method to evaluate the security situation of real-time traffic of hosts is presented. A group of statistic that can reflect the network traffic features in a fixed time window are selected as the evaluation metrics. Based on the large samples, the information entropy gain method is applied to determine the importance of evaluation results for different metrics. Then, using hierarchical weighted method, the evaluation re suits are regarded as the normalized abnormality value to evaluate the real time traffic of host networks. Experiments and testing show that this method can reasonably evaluate the host network abnormal flows caused by the DDoS, DoS worm and other attacks, and has good evaluation re suits for new attacks that cause abnormal change of network traffic.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第4期415-419,共5页 Journal of Xi'an Jiaotong University
基金 国家杰出青年基金资助项目(6970025) 国家自然科学基金资助项目(60243001) 国家高技术研究发展计划资助项目(2001AA140213)
关键词 安全评估 网络攻击 主机实时流量 security evaluation network attack host real-time traffic
  • 相关文献

参考文献6

  • 1Hariri S,Qu Guangzhi,Dharmagadda T,et al.Impact analysis of faults and attacks in large-scale networks[J].IEEE Security and Privacy,2003,1(5):49-54.
  • 2Denning D E.An intrusion-detection model[J].IEEE Transactions on Software Engineering,1987,13(2):222-232.
  • 3Lan Kunchan,Hussain A,Dutta D.Effect of malicious traffic on the network[A].Passive and Active Measurement Conference,San Diego,USA,2003.
  • 4程光,龚俭,丁伟.基于抽样测量的高速网络实时异常检测模型[J].软件学报,2003,14(3):594-599. 被引量:37
  • 5Hu Hanping,Guo Wenxuan.A method of security measurement of network data transmission[A].19th IEEE International Parallel and Distributed Processing Symposium,Nice,France,2005.
  • 6Ham J,Kamber M.数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2001.

共引文献36

同被引文献24

  • 1汤光华,曾宪报.构建指标体系的原理与方法[J].河北经贸大学学报,1997,18(4):60-62. 被引量:18
  • 2陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 3邬书跃,田新广.基于隐马尔可夫模型的用户行为异常检测新方法[J].通信学报,2007,28(4):38-43. 被引量:20
  • 4ZARE M H, MASNADI-SHIRAZI M A. Arima model for network traffic prediction and anomaly detection [C]/// Proceedings of ITSim International Symposium on Information Technology. Piscataway, NJ, USA: IEEE, 2008:1-6.
  • 5VOELKER M D, SAVAGE S G M. Inferring internet denial-of-service activity [C] // Proceeding of the 10th USENIX Security Symposium. Berkeley, CA, USA. The Advanced Computing Systems Association, 2001 9-22.
  • 6Massachusetts Institute of Technology. Lincoln La- boratory. DARPA intrusion detection evaluation[EB/ OL]. (2008-06-01) [2009-03-02-]. http://www. II. mit. edu/IST/ideval/data/data.index. html.
  • 7AUGUSTIN S, KAVE S, NINA T. Combining filtering and statistical methods for anomaly detection [C]//Prceedings of USENIX Association Internet Meas- urement Conference. Berkeley, CA, USA: The Advanced Computing Systems Association, 2005: 331- 344.
  • 8Lane T, Brodley C E. An application of machine learning to anomaly detection 1997.
  • 9Gao Cuixia, Li Zhitang, Chen Lin. Host risk evaluation framework based on multi-source information [ C ]//ISECS International Colloqui- um on Computing, Communication, Control, and Management,2009: 249 - 252.
  • 10Lane T. Machine Learning Techniques for the Computer Security Domain of Anomaly Detection 2000.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部