期刊文献+

基于FFT-MCC分析的ICA(BSS)盲不确定性消除 被引量:8

A New Method for Recognition of Independent Noise Sources of Complex System under Strong Noisy Environment
下载PDF
导出
摘要 为了消除ICA(BSS)估计的幅值、相位及排序等盲不确定性,提出一种基于快速傅里叶变换与最大相关准则分析的ICA(BSS)估计源自适应校正方法。借助对原始传感观测及估计源的频谱分析,近似获得各本底源信号在观测信号中所占的比重———初始放大权值;基于最大相关准则优化调整ICA(BSS)估计源的相位,并对初始放大权值进行微调,从而消除ICA(BSS)估计的盲不确定性,实现源波形的恢复及其混合参数的估计。仿真试验结果证明了该方法的有效性,也表明它在复杂系统源识别或重建方面具有较大的应用潜力。 In order to eliminate blind uncertainty of ICA estimation on amplitudes, phases and orders, and to use them better, a new adaptive method for revision of ICA estimates was proposed based on combinition of fast Fourier transform (FFT) with maximum correlation criterion (MCC). By using FFT into both observations and ICA estimates, approximate proportions(i, e. the first weight) of every sources among all observations were solved firstly. Then, optimizations of phase and the first weights were done. Thus, blind uncertainty of ICA estimates was eliminated effectively, and the waveform of sources and their mixing coefficient were restored correctly. The simulation results imply that the new method is effective, and of great potential in source recognition and reconstruction of complex systems.
机构地区 浙江大学 嘉兴学院
出处 《中国机械工程》 EI CAS CSCD 北大核心 2006年第7期673-677,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50505016 50575095)
关键词 盲源分离 独立分量分析 最大相关准则 源识别或重建 blind source separation(BSS) independent component analysis (ICA) maximum correlation eriterion(MCC) sources recognition or reconstruction
  • 相关文献

参考文献11

  • 1Comon P.Independent Component Analysis,a New Concept?Signal Processing,1994,36:287~314
  • 2诺顿MP 盛元生等(译).工程噪声和振动分析基础[M].北京:航空工业出版社,1993.155-187.
  • 3焦卫东,杨世锡,吴昭同.基于源数估计的旋转机械源盲分离[J].中国机械工程,2003,14(14):1184-1187. 被引量:20
  • 4Lyon R H.Machinery Noise and Diagnostics.Boston:Butterworths Publishing House,1987
  • 5Ypm A,Leshem A,Robert P W D.Blind Separation of Rotating Machine Sources:Bilinearforms and Convolutive Mxtures.Neurocomputin,2002,49:349~468
  • 6Anupama G,Deng G,Kalman J,et al.Independent Component Analysis Applied to Electrogram Classification During Atrial Fibrillation.The 14th IEEE International Conference on Pattern Recognition,Melbourne,Australia,1998
  • 7Tong L,Liu R,Soon V,et al.Indeterminacy and Identifiability of Blind Identification.IEEE Transaction on Circuits System,1991,38(5):499~509
  • 8Aapo H.Survey on Independent Component Analysis.Neural Computing Surveys,2000,2:94~128
  • 9Cardoso J F,Beate H L.Equivariant Adaptive Source Separation.IEEE Transaction on Signal Processing,1996,45 (2):434~444
  • 10Cardoso J F,Souloumiac A.Blind Beamforming for Non-Gaussian Signals.IEE Proceedings-F,1993,140(6):362~370

二级参考文献6

  • 1Pierre Comon. Independent Component Analysis.A New Concept Signal Processing, 1994, 36 (12):287-314.
  • 2Murty S, Kompella. A Technique to Determine the Number of Incoherent Sources to the Response of a System. Mechanical System and Signal Processing, 1994,8 (4) : 363- 380.
  • 3Cardoso J F, Souloumiac A. Blind Beamforming for Non--Gaussian Signals. IEEE Proceedings-F,1993,140(6):1-3.
  • 4Bendat J S, Piersol A G. Engineering Applications of Correlation and Spectral Analysis. New York:John Wiley, 1980.
  • 5Strang G. Linear Algebra and its Applications. San Diego: Harcourt Brace Jovanovich, 1988.
  • 6Tong T, Liu R, Soon V, et al. Indeterminacy and ldentifiability of Blind Identification. IEEE Tran.on CS, 1991,38(5):499-509.

共引文献29

同被引文献65

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部