期刊文献+

一类带有脉冲输入的捕食者-食饵恒化器模型的动力学性质(英文) 被引量:1

The Dynamic Behaviors of a Predator-prey System Modelling for a Chemostat with Impulsive Input
下载PDF
导出
摘要 给出了一类脉冲输入培养基的捕食者-食饵恒化器模型,获得了一个食饵(或捕食者)和培养基共存的正周期解,并且对这个周期解具有侵入阈值进行稳定性分析.当投放周期大于某个临界值时,这个周期解失去稳定性. A simple model for a chemostat with predator-prey and periodically pulsed substrate is givem in this paper the exact periodic solutions with positive concantrations of substrate and prey (predator) is obtained,stability of solution which yields an invasion threbold is analysed. When the period is more than the critical value,the periodic solution loses its stability.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2006年第2期132-134,190,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 supportedbytheNationalNaturalScienceFoundationofChina(No.10471117) theHenanInnovationProjectforUniversityProminentResearchTalents(No.2005KYCX017) theScientificResearchFoundationfortheReturnedOverseasChineseScholars,StateEducationMinistry
关键词 恒化器模型 捕食者-食饵系统 脉冲效应 稳定周期解 稳定性 chemostat predator-prey system impulsive effect periodic solution stability
  • 相关文献

参考文献7

  • 1EL-SHWIKH M M,MAHROUF S A.Stability and Bifurcation of a Simple Food Chain in a Chemostat with Removal Rates[J].Chaos,Solitons and Fractals,2005,23:1475-89.
  • 2HSU S B.A Competition Model for a Seasonally Fluctuation Nutrient[J].J Math Biol,1980,18:115-132.
  • 3BUTLER G J,HSU S B,WALTMAN P.A Mathematical Model of the Chemostat with Periodic Washout Rate[J].SIAM J Appl Math,1985,45:435-449.
  • 4PILYUGIN S S,WALTMAN P.Competition in the Unstirred Chemostat with Periodic Input and Washout[J].SIAM J Appl Math,1999,59:1157-1177.
  • 5ZHANG Y J,XIU Z L,CHEN L S.Chaos in a Food Chain Chemostat with Pulsed Input and Washout[J].Chaos,Solitons and Fractals,2005,26:159-166.
  • 6BAINOV D D,SIMENOV P S.Impulsive Differential Equations:Periodic Solutions and Applications [M].New York:John Wiley and Sons,1993.
  • 7王豪,郑丽丽.一类带有扩散的捕食与被捕食系统的分析(英文)[J].信阳师范学院学报(自然科学版),2005,18(1):19-21. 被引量:1

二级参考文献5

  • 1YANG X, CHEN L, CHEN J. Permanenceand positive periodic solution for the single-species nonautonomous delay diffusivemodel[J]. Comput Math Appl, 1996,32:109.
  • 2BRAUER F,MA Z. Stability of stage-structured population models[J]. J Math Anal,1987,126 (2): 301.
  • 3FREEDMAN H I,SREE HARI RAO V. The trade-off between mutual interference and timelags in predator-prey systems[J]. Bull math Biol, 1983,45: 991-1003.
  • 4COOKE K L,VAN DEN DRIESSCHE P. On zeros of some transcendental functions[J].Funk-cial Eyac,1986,29:77- 99.
  • 5HALE J K. Theory of functional differential equations[M]. New York:Springer-Verlag, 1977.

同被引文献4

  • 1向中义,宋新宇.基于脉冲扰动作用下一个捕食者-两个食饵模型的动力学性质[J].高校应用数学学报(A辑),2007,22(2):159-166. 被引量:2
  • 2Jiao J J, Chen L S. A pest management SI model with biologicaland chemical control [ J ]. Appl Math Comput ( S0096-3003 ) ,2006,183 : 1018- 1026.
  • 3Song X Y, Xiang Z Y. The prey-dependent consumption two-prey one-predator models with stage stuture for the predator and impulsive effects[ J]. Journal of Theoretical Biology( S0022-5193 ) ,2006,242:683-689.
  • 4Laskshmikantham V, Bainov D D,Simeonov P. Theory of impulsive differential equations [ M ]. Singpore : World Scientific, 1989.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部