期刊文献+

欧式期权定价基本原理及其计算公式

The Basic Theory and Account formula of the Pricing of the European Options
下载PDF
导出
摘要 文献[1]给出了买入和卖出期权定价的基本概念、资产定价定理和资产定价的数学结构,本文进一步阐述了欧式买入和卖出期权定价的基本原理及其数学模型,并导出Slack-Scholes期权定价公式. The basic theory of buying and selling the asset pricing of the European options in [ 1 ] is given. The article probes into the basic theory of pricing European put and call option and mathematical model of the European options, and the Black-Scholes option formula.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2006年第2期233-235,238,共4页 Journal of Xinyang Normal University(Natural Science Edition)
关键词 Redundant债权 期权 套利 完备市场 Slack-Schols公式 redundant debtee options arbitrage complete markets black-scholes formula
  • 相关文献

参考文献8

  • 1宋福庆,孙胜利.期权定价的数学模型[J].安阳师范学院学报,2005(2):14-16. 被引量:1
  • 2COX J,ROSS S,RUBINSTEIN M.Option Pricing:a Simplified Approach[J].J.Financial Econ,1979(7):229-263.
  • 3DELBAEN F,SCHACHERMAYER W.The Existence of Absolutely Continuous Local Martingale Measures[J].Ann Appl Probab,1995(5):926-945.
  • 4DRITSCHEL M,PROTTER P.Complete Markets with Discontinuous Security Price[J].Finance Stochastics,1999(3):203-214.
  • 5DELBAEN F,SCHACHERMAYER W.A General Version of the Fundamental Theorem of Asset Pricing[J].Math Ann,1994(300):463-520.
  • 6DELBAEN F,SCHACHERMAYER W.The Fundamental Theorem for Unbounded Stochastic Processes[J].Math Ann,1998(312):215-250.
  • 7孙胜利,刘永建.欧式期权定价原理及其应用[J].河南科学,2005,23(6):794-797. 被引量:4
  • 8DALANG R,MORTON A,WILLINGER W.Equivalent Martingale Measures and no Arbitrage in Stochastics Securities Market Models[J].Stochastics Stochastic Rep,1990(29):185-201.

二级参考文献14

  • 1Artzner P, Heath D. Approximate completeness with multiple martingale measures[J]. Math. Finance,1995, 5:1-11.
  • 2Bernstein P L. Capital Ideas[M]. New York:Free Press, 1992.
  • 3Clark J M C. The representation of functionals of Brownian motion by stochastic integrals[J]. Ann. Math. Statist., 1970, 41:1282-1295.
  • 4Cox J, Ross S, Rubinstein M. Option pricing: a simplified approach[J]. J. Financial Econ., 1979,7:229-263.
  • 5Delbaen F, Schachermayer W. A general version of the fundamental theorem of asset pricing[J]. Math.Ann., 1994, 300:463-520.
  • 6Huang C F. Information structures and viable price systems[J]. J. Math. Econ., 1985,14:215-240.
  • 7Harrison,J.M.,Pliska,S.R.Martingalesandstochas ticintegralsinthetheoryofcontinuoustrading[].Sto chasticProcessAppl.1981
  • 8Duffie,D.Dynamicassetpricingtheory[]..1996
  • 9Musiela,M.,Rutkowsks,M.MartingaleMethodsinFi nancialModelling[]..1997
  • 10Shiryaev,A.N.EssentialsofStochasticFinance:Facts,Models,Theory[].The Wall Street Journal.2000

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部