摘要
设f:[0,1]×R2→R满足Caratheodory条件,a,b∈L1[0,1],a(.)≥0,b(t)≥0满足0≤∫01a(t)dt<1,0≤∫01b(t)dt<1,运用Leray-Schauder原理考虑了边值问题x″(t)=f(t,x(t),x′(t))+e(t),t∈[0,1],x′(0)=∫01b(t)x′(t)dt,x(1)=∫01a(t)x(t)dt解的存在性.
Let: f:[0,1]×R^2→R satisfies Carathodory condition,a,b∈L^1[0,1],a(·)≥0,b(t)≥0 and 0≤∫1 0 a(t)dt〈1,0≤∫1 0 b(t)dt〈1. By means of Leray-Sehauder Theorem the following problem is considered :x″(t)=f(t,x(t),x′(t))+e(t),t∈[0,1],x′(0)=∫1 0b(t)x′(t)dt,x(1)=∫1 0 a(t)x(t)dtThe criteria of admitting solutions for boundary value problem of second order ordinary differential equation is established.
出处
《甘肃联合大学学报(自然科学版)》
2006年第2期1-3,11,共4页
Journal of Gansu Lianhe University :Natural Sciences