期刊文献+

一类二阶常微分方程边值问题解的存在性

Existence of Solutions of a Second Order Value Problem for Ordinary Differential Equation
下载PDF
导出
摘要 设f:[0,1]×R2→R满足Caratheodory条件,a,b∈L1[0,1],a(.)≥0,b(t)≥0满足0≤∫01a(t)dt<1,0≤∫01b(t)dt<1,运用Leray-Schauder原理考虑了边值问题x″(t)=f(t,x(t),x′(t))+e(t),t∈[0,1],x′(0)=∫01b(t)x′(t)dt,x(1)=∫01a(t)x(t)dt解的存在性. Let: f:[0,1]×R^2→R satisfies Carathodory condition,a,b∈L^1[0,1],a(·)≥0,b(t)≥0 and 0≤∫1 0 a(t)dt〈1,0≤∫1 0 b(t)dt〈1. By means of Leray-Sehauder Theorem the following problem is considered :x″(t)=f(t,x(t),x′(t))+e(t),t∈[0,1],x′(0)=∫1 0b(t)x′(t)dt,x(1)=∫1 0 a(t)x(t)dtThe criteria of admitting solutions for boundary value problem of second order ordinary differential equation is established.
作者 沈文国
出处 《甘肃联合大学学报(自然科学版)》 2006年第2期1-3,11,共4页 Journal of Gansu Lianhe University :Natural Sciences
关键词 边值问题 Leray-Sehauder原理 CARATHEODORY条件 不动点 boundary value problem Leray-Schauder theorem f Carathodory condition fixed point
  • 相关文献

参考文献3

  • 1[1]Gupta C P.Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation[J].Math Anal Appl,1992,168:540-551.
  • 2[2]Gupta C P,Ntouyas S K,Tsamatos P Ch.Solvability of an M-point boundary value problem for a second order ordinary differential equation[J].Math Anal Appl,1995,189:575-584.
  • 3[3]Gupta C P,Trofimchuk S I.Solvability of a Multi-Point Boundary Value Problem and Related a Priori Estimates[J].Canad Appl Math Quart,1998,6(1):45-60.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部