期刊文献+

感染率为βIS/(1+R)的SIR流行病脉冲接种模型 被引量:2

Impulsive Vaccination of SIR Epidemic Models with Incidence Rates
下载PDF
导出
摘要 研究了具有感染率为βIS/(1+R)流行病SIR模型的脉冲接种策略,通过利用频闪映射的方法,得到了无病周期解的确切表达式,并且也给出了此周期解的全局稳定性分析,即如果R<1,疾病得以根除,无病周期解稳定,如果R>1,则疾病持续,无病周期解是不稳定的,疾病流行. In this paper, considering impulsive vaccination strategies of SIR epidemic models with incidence rates. Using stroboscope map, we obtain the exact periodic infection -free solution and analyses the globally asymptotically stable of the periodic infection - free solution, that is, if R is less than one, the epidemic is eradicated and periodic infection - free solution is globally asymptotically stable,if R is more than one, the epidemic is permanent and the periodic infection- free is unstable.
作者 向中义
出处 《湖北民族学院学报(自然科学版)》 CAS 2006年第1期13-17,共5页 Journal of Hubei Minzu University(Natural Science Edition)
基金 国家自然科学基金资助项目(10471117) 高校杰出科研人才创新工程项目(2005KYCX017)
关键词 脉冲接种 SIR模型 全局渐近稳定 基本再生数 impulsive vaccination SIR model globally asymptotically stable basic reproductive rate
  • 相关文献

参考文献8

  • 1Bailey N T J.The mathematical theory of infectious disease and its applications 2 nd edn[M].London:Griffin,1975.
  • 2Agur Z,Cojocaur L,Mazor G,et al.Pulse mass measles vaccination across age cohorts[J].Proc Natl Acad Sci,1993,90:11698~11702.
  • 3Shulgin B,Stone L,Agur Z.Pulse vaccination strategy in the SIR epidemic model[J].Bulletin of Mathematical Biology,1998,60:1~26.
  • 4Dequadros C A,Andrus J K,Olive J M.Eradication of poliomyelitis:progress[J].Am Pediatr Inf Dis J,1991,10:222~229.
  • 5Sabin A B.Meales,killer of millions in developing countries:strategies of elimination and continuing control[J].Eur J Epidemiol,1991,7:1~22.
  • 6Hethcote H W.Qualitative analyses of communicable disease models[J].Math Biosci,1976,28:335~336.
  • 7Engbert R,Drepper F.Chance and chaos in population biology models of recurrent epidemics and food chain dynamics[J].Chaos,Solitons & Fractals,1994,4:1147~1169.
  • 8Bainoe D D,Simeonov P S.System with impulse effect,theory and applications[A].Ellis Harwood series in mathematics and its applications[C].Chichester:Ellis Harwood,1989.

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部