摘要
研究了具有感染率为βIS/(1+R)流行病SIR模型的脉冲接种策略,通过利用频闪映射的方法,得到了无病周期解的确切表达式,并且也给出了此周期解的全局稳定性分析,即如果R<1,疾病得以根除,无病周期解稳定,如果R>1,则疾病持续,无病周期解是不稳定的,疾病流行.
In this paper, considering impulsive vaccination strategies of SIR epidemic models with incidence rates. Using stroboscope map, we obtain the exact periodic infection -free solution and analyses the globally asymptotically stable of the periodic infection - free solution, that is, if R is less than one, the epidemic is eradicated and periodic infection - free solution is globally asymptotically stable,if R is more than one, the epidemic is permanent and the periodic infection- free is unstable.
出处
《湖北民族学院学报(自然科学版)》
CAS
2006年第1期13-17,共5页
Journal of Hubei Minzu University(Natural Science Edition)
基金
国家自然科学基金资助项目(10471117)
高校杰出科研人才创新工程项目(2005KYCX017)
关键词
脉冲接种
SIR模型
全局渐近稳定
基本再生数
impulsive vaccination
SIR model
globally asymptotically stable
basic reproductive rate