期刊文献+

多项式微分系统的极限环分支 被引量:2

LIMIT CYCLE BIFURCATIONS IN PLANAR POLYNOMIAL DIFFERENTIAL SYSTEMS
下载PDF
导出
摘要 与Hilbert第十六问题相关联,本文讨论了平面多项式微分系统的极限环分支,将其分为四种类型,其中前两类与相平面上的某些奇点相关联,后两类则在相平面的一定区域内不与任何奇点相关联.文中的主要结论是:至今为止对一些具体多项式微分系统,特别是二、三次系统研究中所得到的极限环都与前两类极限环分支,即奇点分支与奇闭轨分支相关联,由此观点出发,在具体系统的研究中。 Associated with the Hilbert’s 16 th problem, the limit cycle bifurcations for planar polynomial systems are discussed, and are classified into four different types, among which the first two types are related to certain critical points on the phase plane, and the last two are not related to any critical point in a certain region of the phase plane. It is concluded in this paper that the limit cycles obtained for many concrete systems so far, in particular, for quadratic and cubic systems all can be considered as bifurcated from the bifurcation of the first two kinds, i.e., the bifurcations of critical points and singular closed orbit. From this point of view, it can be avioded from the bifurcations of the last two types which are more complicated to be studied.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 1996年第3期245-252,共8页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金 冶金部科学基金
  • 相关文献

参考文献13

  • 1罗定军,Adv Ser in Dyn Systems,1996年
  • 2严钟,J Nanjing Univ Math Biqurterly,1995年,12卷,1期
  • 3叶彦谦,多项式微分系统定性理论,1995年
  • 4严钟,J Nanjing Univ Math Biqurterly,1993年,57页
  • 5罗定军,Proc Dyn Sys Related Topics,1991年
  • 6严钟,Differential Equations,1990年,6卷,2期,225页
  • 7Sun Jianhua,Differential Equations,1988年,4卷,1期,71页
  • 8Zhao Shenqi,Differential Equations,1987年,3卷,2期,213页
  • 9李继彬,科学通报,1987年,32卷,10期,655页
  • 10严钟,Differential Equations,1986年,2卷,4期,461页

同被引文献14

  • 1李学敏.一类齐三次系统的全局结构[J].系统科学与数学,1995,15(2):155-163. 被引量:16
  • 2高洁.具有三对特殊方向的一类平面齐五次系统的全局拓扑结构[J].大学数学,2006,22(4):56-61. 被引量:4
  • 3李继彬 陈孝秋.平面二次微分系统的Poincare^e分支[J].科学通报,1987,32:10-10.
  • 4叶彦谦.多项式微分定性理论[M].上海:上海科学技术出版社,1995.
  • 5张棣.微分方程积分曲线的拓扑结构[J].数学进展,1995,3(2):234.
  • 6李森林. 积分曲线的拓扑结构[J].数学学报,1960,10(1):l-21.
  • 7I Cima A. Llibre J. Algebraic and topological classification of the homogeneous cubic vector fields in the plane[J]. Journa of Mathematical Analysis Applications, 1990, 147(2): 420-448.
  • 8Yang X J. Global phase-portraits of plane homogeneous polynomial vector fields and stability of the orign[J]. Systems Science and Mathematical Science, 1965, 11: 176-181(in Russian).
  • 9Zhang J F. Limit cycles and global structure for a class of cubic systems with an invariant central conic[J]. Ann of Diff Eqs, 1989, 5(2): 211-234.
  • 10Yang D W, Yao W H, Li X M. Global Structures of the plane cubic system with the Stellar NQde [J]. Ann of Diff Eqs, 1996, 12(4): 489-901.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部