摘要
本文首先给出了一个右连续上鞅的SD提升,在引进S-上鞅和强S-上鞅概念之后,研究了一致可积上鞅与S-上鞅,类(D)上鞅与强S-上鞅之间的关系,并得到了S-上鞅与强S-上鞅的许多性质,作为其直接结果,给出了类(D)上鞅的Doob-Meyer分解.最后讨论了一个一致可积上鞅及其SD提升分别决定的Doleans测度之间的关系,给出了一致可积上鞅所决定的Doleans测度的Loeb表示,并由此证明,在一个Loeb概率空间中,右连续上鞅一致可积当且仅当它是类(D)
In the paper, the SD lifting of right continuous supermartingale is obtained. By introducing S supermartingale and strong S supermartingale, the relations between u.i.supermartingale and S supermartinale, class (D) supermartingale and strong S supermartingale are discussed respectively. And many properties about S supermartingale and strong S supermartingale are obtained, which lead to the Doob Meyer decomposition of class (D) supermartingale. Finally, the relations between the Doleans measures, which are defined by u.i. supermartingale and its SD lifting respectively, are discussed. The Loeb representation of the Doleans measure generated by u.i. supermartingale is obtained. The equivalence between u.i.supermartingale and class (D) supermartingale in the Loeb probability space is proved.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
1996年第3期301-312,共12页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金
国防科技大学试验技术研究经费资助
关键词
SD提升
强S-上鞅
右连续上鞅
提升
随机过程
鞅
SD Lifting, S supermartingale, Strong S supermartingale, Internal Doleans Measure.