期刊文献+

基于水稻内含子长度多态性开发禾本科扩增共有序列遗传标记 被引量:26

Development of Amplified Consensus Genetic Markers in Gramineae Based on Rice Intron Length Polymorphisms
下载PDF
导出
摘要 通过在多态位点两侧的保守编码序列上设计引物,可以开发出在不同物种间通用的基于PCR的分子标记,称为扩增共有序列遗传标记(ACGM)。【目的】探讨利用已公布的水稻籼、粳两亚种的基因组序列开发禾本科ACGM的可行性。【方法】根据水稻两亚种间的内含子长度多态性,开发了38对ACGM引物。用这些引物对玉米、粟、大麦、小麦、竹子、旱稗草和大米草6个属共12个不同材料进行PCR实验。【结果】几乎所有引物都可在至少1种材料中扩增出特异条带,而1/3以上的引物可以在全部供试材料中获得特异扩增产物。在每一种供试材料中,平均大约有2/3的引物可以成功扩增出目的条带。这些引物在各属内不同种、亚种或品种(系)之间的多态性比例在24.1%~90.3%之间,平均为44.6%。【结论】利用水稻基因组序列信息开发禾本科通用型ACGM是可行的。 By designing primers in the conservative coding sequences flanking a polymorphic site, it is possible to exploit a PCR-based marker called amplified consensus genetic marker (ACGM), which is transferable among different species. [Objective] The purpose of this study was to investigate the feasibility of developing ACGMs in Gramineae using the published genomic sequences of indica and japonica rice. [ Method] Based on the intron length polymorphisms between the two rice subspecies, 38 pairs of ACGM primers were developed. Twelve accessions representing 6 grass genus including Oryza, Zea, Setada, Triticum, Phyllostachys, Echinochloa crusgalli Beauv and Sparlina anglica were used to verify the candidate ACGM markers.[ Result ] Almost all primers could acquire specifically amplified products in at least one accession. More than 1/3 primers could obtain specifically amplified products in all accessions. For each accession, about 2/3 primers on average could obtain specifically amplified products. The proportion of polymorphisms between species or subspecies within genus was 24.1%-90.3%, with an average of 44.6%. [Conclusion] These results showed that developing ACGM in Gramineae using rice genome data is feasible.
出处 《中国农业科学》 CAS CSCD 北大核心 2006年第3期433-439,共7页 Scientia Agricultura Sinica
基金 国家"863"计划项目(2003AA207160) 福建省重大科技专项(2004NZ01-2)
关键词 扩增共有序列遗传标记 内含子长度多态性 ACGM 禾本科 Amplified consensus genetic marker, Intron length polymorphism ACGM Gramineae
  • 相关文献

参考文献23

  • 1Botstein D,White R L,Skolnick M,Davis R W.Construction of a genetic linkage map in man using restriction fragment length polymorphisms.Amercia Journal of Human Genetics,1980,32:314-331.
  • 2Williams J G,Kubelik A R,Livak K J,Rafalski J A,Tingey S V.DNA polymorphism amplified by arbitrary primers are useful as genetic markers.Nucleic Acids Research,1990,18:6531-6535.
  • 3Vos P,Hogers R,Bleeker M,Reijans M,Lee T van de,Hornes M,Frijters A,Pot J,Peleman J,Kuiper M.AFLP:a new technique for DNA fingerprinting.Nucleic Acids Research,1995,23:4407-4414.
  • 4Moore S S,Sargeant L L,King T J,Mattick J S,Georges M,Hetzel D J.Conservation of dinucleotide microsatellites among mammalian genomes allows use of heterologous PCR primer pairs in closely related species.Genomics,1991,10:654-660.
  • 5Li G,Quiros C.Sequence-related amplified polymorphism (SRAP),a new maker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica.Theoretical and Applied Genetics,2001,103:455-461.
  • 6Gale M.D,Devos K M.Plant comparative genetics after 10 years.Science,1998,282:656-659.
  • 7Brunel D,Froger N,Pelletier G.Development of amplified consensus genetic marker (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function.Genome,1999,42:387-402.
  • 8Fourmann M,Barret P,Froger N,Baron C,Chariot F,Delourme R,Brunel D.From Arabidopsis thaliana to Brassica napus:development of amplified consensus genetic markers (ACGM) for construction of a gene map.Theoretical and Applied Genetics,2003,105:1196-1206.
  • 9Goff S A,Ricke D,Lan T H,Presting G,Wang R,Dunn M,Glazebrook J,Sessions A,Oeller P,Varma H,Hadley D,Hutchison D,Martin C,Katagiri F,Lange B M,Moughamer T,Xia Y,Budworth P,Zhong J,Miguel T,Paszkowski U,Zhang S,Colbert M,Sun W L,Chen L,Cooper B,Park S,Wood T C,Mao L,Quail P,Wing R,Dean R,Yu Y,Zharkikh A,Shen R,Sahasrabudhe S,Thomas A,Cannings R,Gutin A,Pruss D,Reid J,Tavtigian S,Mitchell J,Eldredge G,Scholl T,Miller R M,Bhatnagar S,Adey N,Rubano T,Tusneem N,Robinson R,Feldhaus J,Macalma T,Oliphant A,Briggs S.A draft seqeunce of the rice genomes (Oryza sativa L.ssp.japonica).Science,2002,296:92-100.
  • 10Yu J,Hu S,Wang J,Wong GK,Li S,Liu B,Deng Y,Dai L,Zhou Y,Zhang X,Cao M,Liu J,Sun J,Tang J,Chen Y,Huang X,Lin W,Ye C,Tong W,Cong L,Geng J,Han Y,Li L,Li W,Hu G,Huang X,Li W,Li J,Liu Z,Li L,Liu J,Qi Q,Liu J,Li L,Li T,Wang X,Lu H,Wu T,Zhu M,Ni P,Han H,Dong W,Ren X,Feng X,Cui P,Li X,Wang H,Xu X,Zhai W,Xu Z,Zhang J,He S,Zhang J,Xu J,Zhang K,Zheng X,Dong J,Zeng W,Tao L,Ye J,Tan J,Ren X,Chen X,He J,Liu D,Tian W,Tian C,Xia H,Bao Q,Li G,Gao H,Cao T,Wang J,Zhao W,Li P,Chen W,Wang X,Zhang Y,Hu J,Wang J,Liu S,Yang J,Zhang G,Xiong Y,Li Z,Mao L,Zhou C,Zhu Z,Chen R,Hao B,Zheng W,Chen S,Guo W,Li G,Liu S,Tao M,Wang J,Zhu L,Yuan L,Yang H.A draft sequence of the rice genome (Oryza sativa L.ssp.indica).Science,2002,296:79-92.

二级参考文献1

共引文献217

同被引文献394

引证文献26

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部