摘要
设(X,T)是T2空间,T1是拓扑T的基,A是*X上的内代数,ν是A上的内测度,本文用无穷小方法证明了:在k-饱和的非标准模型中,若X是正则空间,且对每一T∈T1,*T∈A,则对X的每一Borel集B,st-1(B)∈Lu(A)∩ns(*X),且νst-1|F(X)是τ-光滑Borel测度,νst-1|F(X)是Radon测度;若对每一T∈T,*T∈A,并且对每一T∈T及每一ε∈R+,有闭集CT,使L(ν)(*T-*C)<ε,则对每一Borel集B,st-1(B)∈L(ν,A)∩ns(*X)且νst-1|F(X)是正则τ-光滑Borel测度.
Let ( X ,T) be a T 2 space, T 1 be a base of T, A be an internal algebra over * X, ν be an internal measure on A. In k saturated nonstandard model, the following results are proved by using infinitesimal method: If X is regular, and for each T ∈T 1, * T ∈A, then for every Borel subset B of X , st -1 (B) ∈L u(A)∩ns( * X ), and ν st -1 |F( X ) is τ smooth Borel measure, ν st -1 |F( X ) is Radon measure; If for each T ∈ T , * T ∈T,and for arbitrary T ∈T and arbitrary ε∈R +, there exists a closed set C T,such that L(ν )( * T- *C) <ε, then for every Borel subset B of X , st -1 ( B )∈ L(ν ,A)∩ns( * X ),and ν st -1 |F(X) is a regular and τ smooth Borel measure. Furthermore, the applications of these results in the extension of measures are discussed.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
1996年第3期18-21,26,共5页
Journal of Shaanxi Normal University:Natural Science Edition
基金
陕西师范大学青年科学基金